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Note: Artificial neural networks for the automated analysis of force map
data in atomic force microscopy
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Force curves recorded with the atomic force microscope on structured samples often show an irregular
force versus indentation behavior. An analysis of such curves using standard contact models (e.g., the
Sneddon model) would generate inaccurate Young’s moduli. A critical inspection of the force curve
shape is therefore necessary for estimating the reliability of the generated Young’s modulus. We used
a trained artificial neural network to automatically recognize curves of “good” and of “bad” quality.
This is especially useful for improving the analysis of force maps that consist of a large number of
force curves. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4876485]

The atomic force microscope (AFM) is widely used for
measuring mechanical sample properties. For this purpose, a
force-versus-indentation-curve (“force curve”) is recorded by
pushing the tip of the AFM cantilever into the sample until a
preselected trigger force is reached. A subsequent force curve
analysis then allows a determination of the local Young’s
modulus of the sample.1 In the force mapping mode, many
force curves are recorded on distinct points of a preselected
raster across the sample surface,2–4 which allows creating im-
ages of the Young’s modulus and the sample topography.

The commonly used contact models of Hertz5 or
Sneddon6 are valid for the elastic indentation into a flat, ho-
mogenous, and infinitely thick sample. Unfortunately, these
requirements are usually not fully fulfilled when examining
nanostructured systems such as polymer nanocomposites,7

cells,2 or biological tissues.4 A finite sample thickness or a
structured surface may result in a force curve, whose shape
significantly deviates from the prediction by the used contact
model. A fit of this model would therefore produce inaccurate
results.8, 9 A critical look at the shape of the recorded force
curve is thus important to estimate the reliability of the mea-
surement. Since force mapping may generate a large num-
ber of force curves (e.g., 64 × 64 = 4096 force curves), it
is necessary to inspect the force curves automatically using a
computer-based routine. We have previously shown that the
average squared deviation of the fit from the data can be used
for this purpose.4 Here, we present another method that is
based on pattern recognition by artificial neural networks and
allows detecting force curves of “good” and “bad” quality in
AFM force maps (“good” and “bad” curves, respectively).

To demonstrate the new method, we recorded a force
map on the replica of an AFM calibration grid (MIKRO-
MASCH TGX01, Innovative Solutions Bulgaria Ltd., Sofia,
Bulgaria). The replica was made from a silicone elastomer
(Sylgard R© 186 Silicone Elastomer Kit, Dow Corning, Mid-
land, USA). The force mapping measurements were per-
formed using a commercial AFM (MFP-3D, Asylum Re-
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search, Santa Barbara, USA) and a standard cantilever (PPP-
NCHR, NanoWorld, Neuchâtel, Switzerland, half cone angle
≈20◦). The cantilever spring constant was calibrated using the
thermal noise method.10 Sneddon’s contact model for conical
tips6 was applied to evaluate the local Young’s modulus of
the sample by using customized software written in Igor Pro
(Wavemetrics, Lake Oswego, Oregon, USA). For details con-
cerning the Young’s modulus analysis see, e.g., Ref. 3.

The trigger height image (i.e., the z-positions at the trig-
ger force) [Fig. 1(a)] shows the typical chessboard-like struc-
ture of the grid with a pitch of 3 μm and a structure height
of ≈800 nm. Although the replica consists of a homogenous
material, the grid structure appears in the Young’s modulus
image [Figure 1(b)]. Moduli in between 1.5 and 2.5 MPa
(red-yellow color) were measured on the flat regions of the
grid (two height levels). In contrast, moduli in between 0.5
and 1.5 MPa (blue color) were measured at the edges in be-
tween the two height levels. Figure 1(c) shows several force
curves from the recorded map. Force curves 1 and 2 were
recorded on the flat areas of the grid and show clearly recog-
nizable non-contact (indentation <0) and contact (indentation
>0) parts. The fit of Sneddon’s contact model (black dashed
traces) matched the data very well and thus gave a reliable
value for the local Young’s modulus. However, force curves 3
and 4, which were recorded at the edges of the grid, showed
an irregular force curve shape with several kinks in the con-
tact part. These kinks indicated that the tip end slipped off the
edges of the grid due to a poorly defined tip-sample contact.
Consequently, the fit of Sneddon’s model did not match the
recorded data and the evaluated Young’s moduli are certainly
not reliable. The histogram of the Young’s modulus [Fig. 1(d)]
showed a rather broad distribution of values with peaks at
about 1 MPa and at about 1.8 MPa.

To improve the quality of the Young’s modulus measure-
ment we implemented an artificial neural network in our anal-
ysis routine, which was trained to detect force curves with an
irregular shape that clearly deviated from the one predicted
by Sneddon’s contact model [=“bad” force curves, Fig. 2(a)].
The used neural network (a three layer perceptron11) con-
sisted of an input layer with 100 nodes, a hidden layer with
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FIG. 1. Force map recorded on a replica of an AFM calibration grid made
from a silicone elastomer (trigger force 50 nN, 64 × 64 force curves). (a)
Trigger height image. (b) Young’s modulus image. The structure of the grid
replica is clearly visible, although the grid was made from a homogenous
material. (c) Force curves recorded on flat surface areas (green) and at the
edges of the grid structures (red). Curves 1– 3 were vertically shifted for
better visibility. (d) Histogram of the Young’s modulus image.

five nodes, and an output layer consisting of a single node
[Fig. 2(b)]. The interconnection between a node i of one layer
with a node j of the following layer was characterized by the
weight parameter wij . The output of node j (a hidden layer
node or the output node) ranged in between 0 and 1 and was
calculated by the nonlinear activation function:

Vj =
[

1 + exp

(
−

n∑
i=1

wij si

)]−1

. (1)

Here, the si were the inputs from node i in the upper layer and
n was the number of inputs connected to node j (n = 100 for
a hidden layer node and n = 5 for the output node). The force
curve was first normalized to a data range in between 0 and 1
to obtain a comparable set of data that can be processed by the
neural network. Afterwards, the number of force curve data
points (≈700) was normalized by interpolation to 100. The
100 consecutive values of the normalized force curve repre-
sented the si values of the 100 input nodes. A number of five
hidden layer nodes were chosen, since networks with more or
fewer hidden layer nodes usually gave a worse performance
(a larger number of false decisions).

The neural network was trained with a data set consist-
ing of “good” and “bad” force curves, which were associated
with an output node activation of 1 or 0, respectively (“su-
pervised learning”11). To create such a training data set, we
first manually selected 50 curves with an irregular shape from
the force map (“bad” curves) [Fig. 2(c)]. The “good” curves
were not directly taken from the force map data because their
average slope in the contact part was similar. This was be-
cause the sample consisted of a single material. An artificial
neural network that is only trained with “good” force curves
from the force map therefore possibly judges the force curve
quality from its average slope and not from its irregular shape.

FIG. 2. (a) Flow chart describing the neural network test for detecting
“good” and “bad” curves in the force map. (b) Structure of the used artifi-
cial neural network (a three layer perceptron). The network was trained with
a data set consisting of “good” and “bad” force curves. (c) Normalized “bad”
curves, taken from the force map data. The curves were vertically shifted for
better visibility. (d) Normalized “good” curves that were modeled according
to Sneddon’s contact model. (e) Young’s modulus image after rejecting all
“bad” force curves. (f) Histogram of the Young’s modulus image.

To prevent this, we modeled 100 “good” force curves show-
ing a broad range of sample Young’s modulus according to
Sneddon’s contact model and added them to the training data
set [contact point node number varied in between 15 and 90,
Fig. 2(d)]. The root-mean-square (RMS) noise in the recorded
force curves was ≈250 pN, which is ≈0.5 % of the trigger
force (50 nN). To ensure that the neural network did not re-
ject “good” but slightly noisy curves from further analysis, we
added a similar amount of Gaussian noise to the normalized
model curves (standard deviation of Gaussian noise = 0.05).

The training algorithm was based on back-propagation
and iteratively minimized the RMS error between the calcu-
lated and the preselected output node activations of the train-
ing data set by changing the weights wij .11 After a number of
100 000 iterations, the RMS-error had decreased from a value
close to 1 (almost no curve of the training set was properly
judged) to a value smaller than 0.005 (all curves of the train-
ing set were judged correctly).

We next implemented the trained neural network in the
analysis. Force curves that produced a neural network out-
put node activation <0.9 showed an irregular shape (=“bad”
force curve) and were therefore rejected from the Young’s
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FIG. 3. Using a neuronal network on an epoxy adhesive to test whether
this material obeys a Sneddon-like behavior. (a) 3D-rendered tapping mode
height image. (b) Young’s modulus image of a force map recorded on the
same area as shown in (a) (trigger force 500 nN, 64 × 64 force curves). (c)
Force curves recorded at positions 1–6, marked by green and red dots in (a).
Curves 1–5 were vertically shifted for better visibility. (d) Young’s modulus
image after rejecting all “bad” force curves. Force map data from Ref. 12.

modulus image shown in Fig. 2(e) (white pixels). Most re-
jected force curves were located at the edges of the grid
structures, but some were located on the flat regions. The
histogram of the Young’s modulus when rejecting all “bad”
curves from the analysis consisted of only one peak around
(1.89 ± 0.49) MPa [mean ± standard deviation, Fig. 2(f)]. A
single peak was expected, since the grid replica consisted of
a single homogeneous material. In contrast, a Young’s mod-
ulus of (1.43 ± 0.65) MPa had been found when considering
also the “bad” curves [Fig. 1(d)]. Including the trained neu-
ral network in the force map analysis therefore increased the
measured average Young’s modulus of the sample by 32%
and reduced the relative error of this measurement from 45%
to 26 %.

As a further example, we implemented a neural network
in the analysis of a force map, which was recorded on the sur-
face of an epoxy adhesive (Toolcraft Multi Power, distributed
by Conrad Electronic SE, Hirschau, Germany). The tapping
mode height image acquired before the force map reveals
a large central and numerous smaller peripheral depressions
with a depth of 100–400 nm [Fig. 3(a)]. The Young’s mod-
ulus image shows large local variations ranging from about
50 MPa (dark blue) to about 1 GPa (yellow) [Fig. 3(b)]. A se-

lection of six force curves recorded on different positions on
the epoxy surface is shown in Fig. 3(c) [positions marked by
numbered green and red dots in panel (a)]. Force curves 1–4
were recorded outside the large central depression. Curves 1–
3 showed a shape that is well matched by a fit of Sneddon’s
contact model. In contrast, curve 4 clearly deviated from the
fit. This can be explained by a poorly defined tip-sample con-
tact at position 4, which lies on the boundary of a depres-
sion. Force curves 5 and 6 were recorded within the large
central depression, which was basically flat. Nevertheless, the
fits deviated significantly from the force curves. This devi-
ation may be a consequence of the viscoelastic and plastic
sample properties of the epoxy sample, which cannot be de-
scribed by Sneddon’s contact model. Implementing a neural
network that was trained the same way as described above
allowed rejecting all “bad” force curves, which did not fol-
low a Sneddon-like behavior [Fig. 3(d), white pixels]. About
75% of all force curves were rejected by the neural network,
showing that Sneddon’s contact model cannot correctly de-
scribe the mechanical properties of the epoxy sample. We
have shown before that the use of a force step load protocol in
combination with an analysis based on the (viscoelastic) stan-
dard linear solid model provides a better way to characterize
the mechanical properties of this epoxy.12

In summary, we demonstrated that force maps may con-
tain “bad” force curves that do not show the force versus in-
dentation behavior predicted by a chosen contact model. To
obtain more reliable results, such curves must be excluded
from further analysis. We showed that artificial neural net-
works can be trained to distinguish between “good” and “bad”
curves, simplifying the analysis of large data sets.

1N. A. Burnham and R. J. Colton, J. Vac. Sci. Technol. A 7(4), 2906–2913
(1989).

2M. Radmacher, J. P. Cleveland, M. Fritz, H. G. Hansma, and P. K. Hansma,
Biophys. J. 66(6), 2159–2165 (1994).

3Y. Jiao and T. E. Schäffer, Langmuir 20(23), 10038–10045 (2004).
4C. Braunsmann, C. M. Hammer, J. Rheinlaender, F. E. Kruse, T. E. Schäf-
fer, and U. Schlötzer-Schrehardt, Invest. Ophth. Vis. Sci. 53(6), 2960–2967
(2012).

5H. Hertz, J. Reine Angew. Mathem. 92, 156–171 (1882).
6I. N. Sneddon, Int. J. Eng. Sci. 3(1), 47–57 (1965).
7D. Wang, S. Fujinami, K. Nakajima, S. Inukai, H. Ueki, A. Magario, T.
Noguchi, M. Endo, and T. Nishi, Polymer 51(12), 2455–2459 (2010).

8H. J. Butt, B. Cappella, and M. Kappl, Surf. Sci. Rep. 59(1–6), 1–152
(2005).

9J. Domke and M. Radmacher, Langmuir 14(12), 3320–3325 (1998).
10J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64(7), 1868–1873 (1993).
11S. S. Haykin, Neural Networks and Learning Machines, 3rd ed. (Prentice

Hall, New York, 2009).
12C. Braunsmann, R. Proksch, I. Revenko, and T. E. Schäffer, Polymer 55(1),

219–225 (2014).

http://dx.doi.org/10.1116/1.576168
http://dx.doi.org/10.1016/S0006-3495(94)81011-2
http://dx.doi.org/10.1021/la048650u
http://dx.doi.org/10.1167/iovs.11-8409
http://dx.doi.org/10.1515/crll.1882.92.156
http://dx.doi.org/10.1016/0020-7225(65)90019-4
http://dx.doi.org/10.1016/j.polymer.2010.03.052
http://dx.doi.org/10.1016/j.surfrep.2005.08.003
http://dx.doi.org/10.1021/la9713006
http://dx.doi.org/10.1063/1.1143970
http://dx.doi.org/10.1016/j.polymer.2013.11.029



