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Force spectroscopy with a large dynamic range using small cantilevers
and an array detector
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The important characteristics of a detector for force spectroscopy measurements are sensitivity,
linearity and dynamic range. The commonly used two-segment detector that measures the position
of a light beam reflected from the force-sensing cantilever in an atomic force microscope becomes
nonlinear when the beam shifts significantly onto one of the segments. For a detection setup
optimized for high sensitivity, such as needed for the use with small cantilevers, it is shown both
experimentally and theoretically that the dynamic range extends to an upper detection limit of only
about 115 nm in cantilever deflection<f10% nonlinearity is required. A detector is presented that
circumvents that limitation. This detector is based on a linear arrangement of multiple photodiode
segments that are read out individually. With such an array detector, the irradiance distribution of the
reflected beam is measured. The reflected beam not only shifts in position but also deforms when the
cantilever deflects because the bent cantilever acts as a curved mirror. The mean of the distribution,
however, is a linear function of cantilever deflection in both theory and experiment. An array
detector is consequently well suited for force measurements for which both high sensitivity and a
large dynamic range are required. ZD02 American Institute of Physics.
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I. INTRODUCTION the measurement range between a lower and an upper detec-
tion limit over which cantilever deflections can be measured.
One of the unique properties of the atomic force micro-The lower detection limit is defined as the smallest measur-
scope(AFM)* is its capability to measure picoNewton forces able deflection. The upper detection limit is defined as the
between a sharp tip and a sample surface. Forces are detecteghtilever deflection for which the signal deviates to a speci-
via the deflection of a flexible cantilever. Both hlgh- fied extend(e_g_’ 10% from a linear response. A |arge dy-
sensitivity and a large dynamic range of the detection ar@amic range is necessary if the deflections vary greatly in
important for force spectroscopy experiments, in which themagnitude.
force is recorded as a function of the tip—sample distance. There is a compromise, however, between a small lower
Recently, a large number of single-molecule force spectrosdetection limit and a large upper detection limit of the two-
copy experiments have been performieiSmall spring con-  segment detector. It will be shown in this article that the
stants down to 10 mN/m are used for measurements of quyarameter mediating this Compromise is the focused spot di-
forces. Forces were measured in the range of 9-20 pN fogmeter on the cantilever. A large focused spot diameter leads
DNA base pairing, in the range of 50-400 pN for ligand- o a small lower detection limiti.e., a high sensitivity but
receptor pairs,in the range of 25-300 pN for intramolecular also a small upper detection limit. A small focused spot di-
structural transitions of proteifignd up to 1-2 nN for co- ameter causes a large lower detection lithi., a low sen-
valent bond$:” Large spring constants of several tens ofstivity) but also a large upper detection limit. For regular-
Newtons per meter are used for measurements of highized cantilevers, the upper detection limit can be increased
forces: in nanoindentation measurements, for example, mpy decreasing the focused spot diameter but at the sacrifice
cromechanical sample properties are determined by indengf detection sensitivity. Unfortunately, small, low-noise can-
ing the sample with loading forces up to several tens ofjlevers do not allow significant variation in the focused spot
microNewton$° A simultaneous high sensitivity and a large diametert6-18
dynamic range are especially important when using cantile- |t was shown earlier that the lower detection limit can be
vers to measure surface stress such as in chemical or thermfalduced under certain circumstances by using an array
sensorg? "3 detectort® Here, the focus will be on the linearity and dy-

One of the Simplest and most sensitive techniques for thﬂamic range aspects at large cantilever deflections.
detection of cantilever deflections is based on optical beam

deflection (“optical lever”), using a two-segmentsplit)
photodetectot**® One of the drawbacks of this detector, !l EXPERIMENT

however, is its limited dynamic range. The latter is defined as  5p, incident collimated laser beam of the wavelenyth

=686+5 nm from a single-mode laser diode was focused to
dElectronic mail: tschaeff@gwdg.de a spot on the cantileveiFig. 1). The one-dimensional pro-
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FIG. 2. Irradiance distribution of the reflected beam on the array detector at
different cantilever deflections. At larger cantilever deflectiéns 0.4\;
z=0.81\), the reflected beam not only shifted laterally, but also increased in
width and decreased in maximum irradiance. This is due to the fact that a
bent cantilever acts as a curved mirror. Theoretical calculateoli lineg
match the experimental data.

function of cantilever deflectiorz, and was plotted for three

different cantilever deflection§Fig. 2). At zero cantilever
FIG. 1. Schematic of the detection setup with an array detector. An inciden . _ . . ‘gt
light beam was focused onto the cantilever, where it produced an irradianc(;k:“ﬂemIon €=0), the irradiance distribution on the detector

distribution! ,(p). The light reflected from the cantilever was projected onto Was symmetric and nearly Gaussian in shéfig. 2, rectan-

the detector at distande where it produced a detector irradiance distribu- gular markers This was due to the Gaussian emission char-

tion 14(s) that was measured by the linear arrangement of the array detecto o iotics of the laser diode and to the fact that almost all of

of detector segments. When the cantilever deflected tye to an applied o ) )

force, the distribution shifted laterally. the incident light was reflected from the planar cantilever
surface. When the cantilever was deflected verticalty (
=0.4)\), the spot translated laterally on the detecfeig. 2,

jection of the irradiance distribution of the spot onto thecrossed markejsHowever, it not only changed in position

p-axis, | (p), had a Gaussian shape with a?ééameter of  but also in shape, i.e., with a decrease in height and an in-

w=10x1 um in the longitudinal direction of the cantilever crease in width. At even larger cantilever deflectiozs (

and with a diameter of 50.5um along the width of the =0.8\), the spot further deforme(Fig. 2, triangular mark-
cantilever. An uncoated silicon nitride cantilever without angerg.
integrated probe tip was used, which was 12+1 um in

T For the large cantilever deflections, it became apparent
length and 5-0.5 um in width.*® The focused spot was po-

ioned b he cl 4 end of th i that the spot on the detector moved significantly away from
sitioned between the clamped end of the cantileyer Q), where it was at zero deflection. A regular two-segment de-

referred to as base, and the free end of the cantileper (t ctor that simply detects the difference in power incident on
=L), referred to as tip, such that the spot center was locate Py P

at p,=6+1 um away from the cantilever base. The light " WO segmentgone segment a$<0, the other one a
beam reflected from the cantilever was projected onto the0) does not generate much variation in the difference sig-
detector at the distanck=75+5 mm from the cantilever, Nalatlarge cantilever deflections: It “loses sight” of the spot
where it produced a spot with a light power Bf=1.34 once the power of the spot has shifted predominantly onto
+0.05 mW and with an irradiance distributidg(s). 14(s) one of the segmenig.g., compare=0.4\ andz=0.8\ in
denotes the one-dimensional projection of the irradiance disFig. 2).

tribution onto thes axis. The detector consisted of a linear The array detector, on the other hand, continues to track
array of 16 photodiode segments. In a previous study, théhe spot up to large cantilever deflections, since it measures
signals from the array detector segments were electronicallys complete irradiance distribution. The question is whether
added after selecting appropriate gain factdrsiere, the ;g itapje signal can be extracted from that distribution. In

5'9”?"5 from the segments were read out individually using drder for such a signal to be useful as a measure of cantilever
multiplexer, allowing for the measurement of the detector

; . o deflection, it should be of high sensitivity and have a high
irradiance distributior 4(s). ] i . i i

The cantilever was deflected by bringing its tip=L) linearity and a large dynamic range. In the following, first the
into contact with a stiff sample surfa¢zeshly cleaved mica theoretical lower and upper detection limit of a two-segment
in air) and vertically ramping up the sample with the help of detector is derlveq. Then, a mgthod is presented for the mea-
a piezoelectric actuator positioned below the sample. Thisurement of cantilever deflection by the array detector, uti-
caused the spot on the detector to move. The resulting irrdizing the additional information obtained about the irradi-
diance distributionl 4(s) was recorded continuously as a ance distribution.
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Ill. THEORY the right-hand side but its height is decreased and its width
increased. Atz=0.8\, the theoretical distribution further
deforms and becomes asymmetric in shape: to the left-hand

The incident laser beam produces a focused spot on th§ide of the peak of the distribution, a deflection point arises
cantilever with a one-dimensional Gaussian irradiance distrits~1 mm), due to diffraction effects. There is good agree-

A. Irradiance distributions

bution in longitudinal direction of the cantileveFig. 1): ment between the experimental and theoretical distributions.
The theoretical distributions were generated by using only

Po oo pwi2 : :
l(p)=\/—— e 2[2(P-pP)w* (1) the measured experimental parameters. In particular, there
™wW are no free parameters in the theory and no curve fitting to

where P, is the total incident light powenw is the 1/&@  he experimental curves was performed.

focused spot diameter, apd is the position of the center of
the spot on the cantilever. According to Fraunhofer diffrac-B- The two-segment detector

tion theory, the one-dimensional irradiance distribution on  Expressions are now given for the lower and the upper

the detector & detection limit of a conventional two-segment detector. The
K L 2 derivation presented here builds upon previous theoretical
l4(s,2)= Py f dp E.(p)e?*kzhPg-ikspf 2 treatment® where the effect of an adjustable aperture on the

7| Jo

detection sensitivity was investigated.

The signal detected by a two-segment detector is the
difference in light power incident on the two segmerig,
—Pg. To normalize the signal to a range pf1;1], Pa

wherek=2x/\ is the wave number of the incident light,s
its wavelengthf is the distance from the cantilever to the

detectorL is the length of the cantileveln(p) is its normal- SRR .
ized shape, and is the deflection at its tip="L). E(p) is — Py is divided by the constaritime-averagedtotal power

the scalar wave function of the light in the cantilever plane:Ncident on the detectoR,e—=Pa+Pg. The difference signal,

IE.(P)|2=1.(p). E(p) is assumed to be real. It is required D+ thus becomes
that the cantilever deflection be small compared to its length, P,—Pg 1 [+=
z<L. This requirement allows the movement of the tip of D2 = 5 (5= sgr(s) lq4(s,z) ds, 4)

. . . . A B detJ —o
the cantilever to be approximated as a vertical displacement
only, without horizontal shift. At larger deflections, the hori- wherel 4(s,2) is the one-dimensional irradiance distribution
zontal position of the tip would move significantly toward on the detectofEq. (2) and Fig. 1. The detector was as-
the cantilever base, since the length of the cantilever is fixedsumed to have 100% responsivity and to be large enough to
This requirementz<L, is relaxed compared to the one useddetect all the light power reflected from the cantilever:
previously, in whichz<\ was required® Equation(2) gives

L
a good approximation of the detector irradiance distribution Pdetzf dp l.(p). 5)
if the detector is placed in the far field of the reflected light 0
beam, i.e.f>ww?/(2\). When the cantilever deflection at its tip is smalt (

In force spectroscopy experiments, a force acts on the tige\/(21)), the difference signal is linear in,
of the cantilever. Consider the normalized shape of a flexible,

rectangular cantileve? D(z)= z , ®)
p*(3L—p) e
h(p)=—%=— (3) where®
2L

4 L L

h(p) is normalized such thadt(0)=0 andh(L)=1. It is due Zmax:)‘(P_f dpf dp’E(p)

to this flexible nature of the cantilever that the detector irra- det /0 0

diance distribution is distorted in size and in shape at larger h(p)—h(p")| *

cantilever deflections, because under such conditions the XEq(p") o_p’ ) (7)

cantilever acts as a curved mirror. While some light is per-
mitted to spill over the length of the cantilevéat its base When the cantilever deflection becomes largéz
and tip, it is assumed that no light spills over the width of >\/(27)), D(z) becomes nonlinear and E®) is no longer
the cantilever. The asymmetric spot needed to meet this relid. This is because E6) requires the power shifted from
quirement is often produced by the elliptical beam of theone to the other segment to increase linearly with cantilever
laser diode itself. This requirement permits the one- dimendeflection. But less and less power shifts at increasing de-
sional mathematical treatment of the system. flection due to finite spot size and power. For large deflec-
I4(s,2) is calculated numerically with parameters iden-tions, when the spot on the detector is shifted by a large
tical to the ones from the experimerfv=10um, p.  distance compared to its width, almost all of the power is
=6um, f=75mm, A\=686nm, L=12um, and Py, incident onto one segmelP,~ Py, Pg~0), and the dif-
=1.34 mW requiringPy=1.36 mW. l4(s,z) is plotted atz ~ ference signal becomes saturated#r) ~ 1. Therefore, the
=0,z=0.4\, andz=0.8\ (Fig.2, solid line. At z=0, the  two-segment detector has a finite upper detection limit. It can
theoretical irradiance distribution is nearly Gaussian inbe shown that,,,, corresponds to the upper detection limit if
shape. Az=0.4\, the center of the distribution is shifted to a nonlinearity of<21.3% is required. For the experimental
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10° high-slope area at the tip of the deflected cantilever, the po-
3 Zoox sition of the focused spot on the cantilever was adjusted de-
by \\ pending on the diameter of the spot:
= O ] N\
510 L-w/2; w<L
Q
E Pc=) L/2;  w>L (10
c10
)
°
T T T T — T This somewhat arbitrary condition fixes one of the*lifea-
0.1 1 10 diance points to the tip of the cantilever, ensuring that a large
focused spot diameter, wiL fraction of the incident beam is incident close to the tip

) _ _where deflections are largest and therefore approximately
FIG. 3. Theoretical dynamic range of a two-segment detector as a function

of the focused spot diameter. The dynamic range is the range between gigPImizing the detectlpn sensitivity for the given SPOt diam-
lower and the upper detection limihighlighted arep This points out the ~ €ter. It can be see(Fig. 3) that for focused spot diameters
compromise between a small lower and a large upper detection(i®it smaller than the cantilever lengtiv(L<1), z,, decreases
fined here for 21.2% nonlineariﬁtyl}c the upper detection Iimi_t is !nc_rgased for increasing spot diameters, reaching a minimun~&t6
by decreasing the focused spot diameter, the lower detection limit increases , 13 . . . .
as well (for w/L<1). Therefore, a large upper detection limit goes at the <10 m atw/L~0.9. At this point, the detection sensitiv-
expense of low detection sensitivity. ity is highest. For spot diameters larger than the cantilever
length W/L>1), z,,, increases again, reflecting a reduced
detection sensitivity due to light lost over the edges at the tip
and the base of the cantilever. This confirms the finding that
parameters used,,,~0.266 \~182 nm[Eq. (7)]. Such a  the detection sensitivity is optimized when the focused spot
maximum detectable deflection is too small for many forceapproximately fills the cantilever, justifying the choice of the
spectroscopic applications. focused spot diameter in the experimé&nt®
The minimum detectable cantilever deflection, i.e., the  For focused spot diameters below the cantilever length
lower detection limit,z,;,, is obtained at a signal-to-noise (W/L<1) it can be seen that,,, decreases with the same
ratio (SNR) of one: D(zqn)/N;=1, whereN, is the funda-  rate asz,, (Fig. 3. This is a manifestation of the compro-
mentally limiting photonic shot noise in the difference signalmise between a low-noise and a large-upper-limit detection

(root-mean-squal’e power fluctuations as a fraction of the tq:'Eq (9)] For the parameters used in the experimenta' Setup,

tal power at the detectpr Zmax/Zmin=4.8X 10°. The dynamic range therefore covers be-
tween 5 and 6 orders of magnitude of measurable cantilever
N = /2hCAf: \ﬁ ) deflection (highlighted area in Fig. 3w/L<1). For w/L
' AP get n >1, light is lost over the edges of the cantilever and fewer

photons will reach the detector, decreasing the dynamic
h is Planck’s constant; is the speed of light, and the dimen- range. It will be shown next that an array detector increases
sionless parameter is the mean number of photons that arethe upper detection limit without sacrificing detection sensi-
counted within the measurement bandwidtff,. Equation tjvity by simply increasing the number of detector segments.
(8) reflects the fact that shot noise arises from photon count-  Note thatp.=6 xwm was used in the experimental setup,
ing and is described by Poisson statistics, where the variangghich is slightly smaller than the Zm that would have been
of the number of counted photons equals the mean numbey better choice according to EG.0). Note also that there is
of counted photongnote that the square &, is the shot- 3 slight discontinuity in the slope Gfy, and zyy at w/L

noise contribution to the relative intensity nois&he rela- =1 (Fig. 3) due to the respective discontinuity of the slope
tive width of the dynamic range is calculated using E): of p. [Eq. (10)].

z 1

= =, 9
min ' C. The array detector

It is therefore determined only hy, the number of photons The meart(first moment, s(z), of the detector irradiance

counted within the measurement bandwidth, and is indeperdistribution, 1 4(s,z), is defined as

dent of the particular shape of the detector irradiance distri-

bution. 1

For high-sensitivity detection, a large SNR is required s(2)= P_dej_
and thus the lower detection limit,,,,, needs to be mini-

mized. The focused spot diameter, has a strong effect on where a detector large enough to detect all light power re-

the lower detection limit. There is a compromise, howeverflected from the cantilever is assumed again. Mathematically,
between the lower and upper detection limit. To demonstrat¢éhe only change to the difference signal of the two-segment

this compromisez,, and z,,. are plotted versus. the nor- detector, Eq(4), is the replacement of “sds)” by “ s.” This
malized focused spot diameter/L (Fig. 3). The parameters functional form yields an optimum measure of cantilever de-
used for this plot aré\f =10 kHz andP,=1.36 mW, again flection for an approximately Gaussian detector irradiance
matching the experimental parameters. To make use of therofile!® Equation(11) can be expanded to

+ oo

s l4(s,z) ds, (11)
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k L L translates by~13.3 um. Alternatively, one can also write
s(z)= %Tf dpf dp" E¢(p)Ec(p") S(2)~(9.15 mm)z/\, i.e., the mean of the distribution
det 70 0 moves bys(\)~9.15 mm when the cantilever deflects by
one wavelengtlg=\. Since this translation is similar in size
to the width of the spot on the detec{@ 4 mm, estimated at
z=0 between the 1feirradiance points the translation of
Using the Dirac Delta function defined asi(x)  the spot on the detector is on the order of its width when the
= 1/(2m) [~ .e”'** ds one obtains by partial integration with cantilever deflects by one wavelength. Even though this re-

Xezikz[h(p)*h(P')]Jm ds s e'ksP=p)f  (12)

respect top”: lation was derived for these particular experimental condi-
f L tions, it also holds true for other choicesfof\, L andw, as
S(z)= FJ dp E.(p)e?kznP) long as the focused spot diameter approximately fills the
detJ O

cantilever(w/L~1). When the focused spot on the cantile-
ver becomes smaller, the width of the detector irradiance
><|[Ec(p’)e‘z“‘”‘(p/)5(p’—p)]'F‘),0 distribution becomes larger and the spot translates by a
smaller fraction of its width for the same cantilever deflec-
tion, decreasing the detection sensitivity. According to Eq.
f dp’8(p" = p) g ,[E (p')e ke’ )]] (14), S(2) could be made arbitrarily large for a givenby
increasingf, for example. But obviously this will not in-
5 . crease the precision in determiniisg since the spot width
= m[E[Ec(p)]po would also increase proportionally fo The detection sensi-
tivity would therefore remain the same.

_ f'—dpEc(p)ezikzh(p)di[Ec(p) ezikzh(p)]]
0 p

f IV. RESULTS AND DISCUSSION

= ikP, { [ES(P)]p=0— f dp Ec(p) Ec(p)

The array detector is considered in comparison to the
two-segment detector with respect to linearity and dynamic
L . . .

. . First, it is discussed how well the two-segment detec-
+2ikz | dp EX(p)h’ 13  range ’ ! .

fo P E(P) (p)] (13 tor can measure large cantilever deflections. One can relate
the measured cantilever deflectlaﬁq to the actual, physi-

The factor 1/2 in the first term in the curly brackets arises cal deflectionz, by rewriting Eq.(6) as

because the integration ovprcovers only half of thésym-

metric) Delta singularity at botlp=0 andp=L. The first 225%(2) = 22D (2). (16)
and second term in the last line cancel and the mean of the ) )
detector irradiance distribution simplifies to D(z) is the difference signal produced by the two-segment
. detector and,, ., is the scaling factor for obtaining the quan-
2 - . SD .
2= 7 (14) titative measurement of the deflectiorz>®, in units of

meter. Equatior(16) reflects the principle by which all de-
. . . flection measurements using the conventional two-segment
where the dimensionless parametes . ) . .
detector are being performed. It is possible to directly calcu-
L [t ) late z,,4 by using Eq.(7) (yielding a theoretical value of
&= %J’O le(p)h'(p)dp. (19 <182 nm), but insteadz,,.,=160 nm is determined experi-
mentally by the usual calibration procedure in which the
Equation(14) relates the mean of the detector irradiance diss|ope of he force curvé“force spectrum” in the linear
tribution, s(z), to the cantilever deflectiorz, It can be seen range(here: 0 nmez<50 nm is measured. This way, mea-
thats(z) is linear inz. This is a result that is not obviows  surement inaccuracies of the experimental parameters
priori, since the spot on the detector deforms at large defleccluding z-piezo calibratioh are neutralized, facilitating a
tions. Apparently, this does not affect the linearitys§f).  comparison between the linearities of the two-segment detec-
The parametes represents the deviation from a hypotheticaltor and the array detectczﬁf’D(z) is plotted as a function of
setup with a planar cantilevgh(p)=p/L) that extends be- 7z (Fig. 4, diamond-shaped markgmsith D(z) determined
yond the base and the tip, such that all incident light is refrom the measured detector irradiance profile. It can be seen
flected € =1). Comparing Eq(14) with Eq. (6) indicates a  that the measured cantilever deflection was linear only at
similar linear relationship for both the array detector and thesmall actual cantilever deflectioriz<100 nm. At larger ac-
two-segment detector, but the array detector does not requitgal deflections, the measured deflections became asymptoti-
small cantilever deflectiong<\/(2). It is therefore ca- cally limited at z,,~160 nm, reflecting the fact that the
pable of measuring larger cantilever deflections than the twodifference signalD(z), approached unity. One can define a

segment detector. nonlinearity coefficienty, as
For the experimental parameters~1.07 ands(z)
~(1.33x 10" z. When the cantilever deflects by 1 nm, for le_z_m 17)

example, the mean of the detector irradiance distribution z
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- dure, in which the slope of the force curve in the linear range
E || ¢ o cxperimen (here: 0 nm=z= 400 nnj is measuredz,"(2) is plotted as a
& ideal function of z(Fig. 4, circular markeps with s(z) determined

400 — from the measured detector irradiance profile. It can be seen
g array detector that the measured cantilever deflection was linear up to much
s larger deflections than it was in the case of the two-segment
%200 B ) detector. Only atA%ctuaI deflections over 500 nm, the mea-
E ¢ WW‘\&ﬂwvvvo—m‘WW‘W SL_lred Qeflectlon;m , startgd _to dew_ate from a Injear_ curve
% - 5 two-segment with unit slope(Fig. 4, solid ling. This, however, is simply
5 \ detector due to the fact that the spot moved beyond the active detector
E 0 : | : I ' area(see also Fig. R A linear behavior would be maintained

0 200 400 for much larger deflections if the number of_ segments.were
actual deflection, z (nm) increased to cover a larger area. The missing probe tip and
the resulting variability in the sample contact could account
FIG. 4. Aforce curve recorded by the two-segment detector and by the arrafor some deviations of the experimental values from the ideal
detector. In the case of the two-segment detectimmond-shaped markers curve at deflections below 500 nfﬁig. 4.

the measured cantilever deflection became 10% nonlinear at an actual can- .

tilever deflection of 115 nm. For the array detector, the measured deflection 1 N€ fact that the scaling factor that relates measured can-
stayed within 10% nonlinearity up to 580 nigircular markers even tilever deflection to the signal from the detector could be
though the detector irradiance distribution became quite distdRed 2, calculated using que) for the two-segment detector or Eq.

triangular markens But this nonlinear deviation above 580 nm is only due .
to the fact that the spot on the detector moved beyond the active detect(gg‘s) for the array detector, respectively, suggests that the

area. Adding more segments would keep a linear dependency for even largeXPerimental calibration procedure, in which a physical force
deflections, as the ideal curve indicateslid line). curve is acquired on a hard surface, might be avoided en-

tirely. It may simply be necessary to calculate the respective

scaling factor using the experimental parameters
with z,/z being the ratio of measured to actual cantilever(L, w, p., A, f) measured up to the required accuracy. This
deflections.y is zero for a perfectly linear response. Fromwould have the advantage that the force-sensing tip would
Fig. 4 (diamond-shaped markerst follows that the signal not have to be brought into contact with any surface before
became 10% nonlinear at an actual cantilever deflection ahe actual measurement, therefore simplifying the experi-
~115 nm. When the cantilever was further deflected, thgnent and avoiding possible tip contamination. The spring
signal became 21.3% nonlinear at an actual deflection ofonstant of the cantilever, for example, could then directly be
~161 nm (~zyay and finally became saturated at evendetermined from a thermal noise spectrtfti® without the
larger deflections. This saturation was not electronic in naneed for the preceding calibration measurement. One practi-
ture, but was rather due to the spot being shifted all the wayal problem with this approach is that the focused spot needs
onto one of the two segments. Even though it is possible ifo be accurately placed on the cantilever. The error in slope
principle to generate a nonlinear correction curve via a caliintroduced by this placement uncertainty is estimated to be
bration force curve, a linear dependency is preferred becausgout 5%. Furthermore, in AFM setups for use with liquids,
it is easier to work with and because a correction wouldthe quality and size of the spot on the detector is affected by
increase the noise of the measurement. Therefore, saturatigitical media and interfaces in the beam patly., the liquid
is inherent to the two-segment detector. These results implyell). The array detector, however, could be used to perform
that when using a setup optimized for high sensitivity and aan immediate “spot quality” assessment similar to the
cantilever with a flexural spring constant of 10 mN/m, themethod of D'Costa and Hoff, with the advantage that the
upper detection limit is reached at a force of only 1-2 nN.detector would not have to be moved manually.
This force is smaller than those of interest in many applica-  |n the theory, a functional shape of the cantilever was
tions. chosen that reflects a quasistatic force acting on the tip. This

The array detector can be discussed in a similar manneghoice is validated by the good agreement between experi-

i.e., with respect to how well it can measure large cantileveimental and theoretical values in Fig. 2. During dynamic mi-
deflections. For that purpose, relate the measured cantilevefoscope operation, however, the detailed motion of the can-
deflection,z,°, to the actual, physical deflection, z, by re- tilever is more complex. For example, dynamic instabilities

writing Eq. (14) as close to the sample surface can occur in force curves, dis-
L torting the cantilever shapgé.An array detector might be
zQD(z)zms(z). (18 useful for deducing the functional shape of the cantilever

during such dynamic processes directly from the detector
9(2) is the signal produced by the array detector Bn@f €) irradiance profile.

is the scaling factor for obtaining the quantitative measure- It was mentioned that adding more segments to the array
ment of the deflectionz;", in units of meter. Just as in the detector increases its upper detection limit. For the number
case of the two-segment detector, this scaling factor could bef segments used here, the measured deflection became 10%
directly calculated using Eq(15) (yielding a theoretical nonlinear(with respect to its linear fitat an actual deflection
value of ~7.50x10 %), but instead, L/(2fe)~8.15 of ~580 nm. Therefore, ik<10% nonlinearity is required
X107 % is determined experimentally by a calibration proce-within the dynamic range, the upper detection limit was mea-
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sured to be larger by a ratio of 580/15.0 for the array practice, however, an analog-to-digital converter that
detector than for the two-segment detector. One could easilyamples the difference signal with a bit depth of typically 16
increase this ratio by simply adding more segments to thean provide a relative width of at most®-6.6x 10%. If
array detector. However, the ratio is theoretically limited by0.05 A were the lowest deflection that could be sampled,
the requiremenz<L [Eq. (2)]. Relating this requirement to then the practical dynamic range would be at most 330 nm.
that for the two- segment detectarg\/(27) [Eg. (6)], one  The array detector, on the other hand, does not have such a
estimates a maximum ratio of i./\~110. This would sampling limitation, sinces(z) is calculated from the digi-
raise the upper detection liniat <10% nonlinearity of the  tized signals from many segments.
array detector to approximately 1@m. Another limitation
that becomes important for small cantilevers is given by the
geometric arrangement of the cantilever with respect to the
surface: The support chip crashes into the surface.al, v CONCLUSION
=L sin(a)+l;cos(), wherea is the tilt of the cantilever with
respect to the surface andis the length of the tip. For a An array detector combines a high sensitivity and a large
small cantilever (e.gl. =12 um), the maximum deflection dynamic range. Its lower detection limit is comparable to or
IS Zgrasi=6.0 um, compared ta@,o~21 um for alarge can-  smaller than that of a two-segment detector, and its upper
tilever (L=100um) (using a typical tilt ofa=10° and a tip  detection limit is only restricted by the size of the detector
length of 4 um). and by geometrical constraints of the cantilever. Therefore,
A continuous detector irradiance distribution was as-an array detector overcomes the relatively small upper detec-
sumed in the theoretical calculation of its mean. In the extion limit of the two-segment detector without sacrificing
periment, there are slightly different conditions, because thgensitivity. In the particular case of a small cantilever with a
distribution was integrated over the finite size of each segfocused spot diameter nearly optimized for high-sensitivity
ment. If the width of the distribution were small compared todetection, the experimental upper detection lidt 10%
the segment size, the measured mean would not be linear ionlinearity was increased from 115 nm for a two-segment
cantilever deflection but would exhibit a step-like behavior.detector to 580 nm for an array detector. Theoretically, the
This effect occurs because such a case resembles the behapper detection limit could be increased up to A6 by
ior of a two-segment detector, with contributions to the mearincreasing the number of array detector segments. The mean
only when the narrow distribution crosses a segment boundsf the detector irradiance distribution is a linear function of
ary. In the case of a Gaussian distribution profile withef 1/ cantilever deflection, even though the shape of the distribu-
width of at least twice the segment size, it is estimated frontion becomes distorted at larger deflections. In addition to
a simple calculatior(data not shownthat the deviation of having a large dynamic range, no mechanical adjustments
the mean in both slope and absolute value is below 1% of theuch as centering the beam on the detector are required for
true values. Since the &7 width of the distribution az=0 an array detector.
in Fig. 2 is approximately 7.4 times the segment size, such
an effect was entirely neglected here.
It was shown for a special case that the lower detection
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