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Force spectroscopy with a large dynamic range using small cantilevers
and an array detector

Tilman E. Schäffera)

Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry,
37077 Go¨ttingen, Germany

~Received 24 August 2001; accepted for publication 18 December 2001!

The important characteristics of a detector for force spectroscopy measurements are sensitivity,
linearity and dynamic range. The commonly used two-segment detector that measures the position
of a light beam reflected from the force-sensing cantilever in an atomic force microscope becomes
nonlinear when the beam shifts significantly onto one of the segments. For a detection setup
optimized for high sensitivity, such as needed for the use with small cantilevers, it is shown both
experimentally and theoretically that the dynamic range extends to an upper detection limit of only
about 115 nm in cantilever deflection if,10% nonlinearity is required. A detector is presented that
circumvents that limitation. This detector is based on a linear arrangement of multiple photodiode
segments that are read out individually. With such an array detector, the irradiance distribution of the
reflected beam is measured. The reflected beam not only shifts in position but also deforms when the
cantilever deflects because the bent cantilever acts as a curved mirror. The mean of the distribution,
however, is a linear function of cantilever deflection in both theory and experiment. An array
detector is consequently well suited for force measurements for which both high sensitivity and a
large dynamic range are required. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1450258#
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I. INTRODUCTION

One of the unique properties of the atomic force mic
scope~AFM!1 is its capability to measure picoNewton forc
between a sharp tip and a sample surface. Forces are det
via the deflection of a flexible cantilever. Both high
sensitivity and a large dynamic range of the detection
important for force spectroscopy experiments, in which
force is recorded as a function of the tip–sample distan
Recently, a large number of single-molecule force spect
copy experiments have been performed.2–4 Small spring con-
stants down to 10 mN/m are used for measurements of s
forces. Forces were measured in the range of 9–20 pN
DNA base pairing,5 in the range of 50–400 pN for ligand
receptor pairs,3 in the range of 25–300 pN for intramolecula
structural transitions of proteins4 and up to 1–2 nN for co-
valent bonds.6,7 Large spring constants of several tens
Newtons per meter are used for measurements of h
forces: in nanoindentation measurements, for example,
cromechanical sample properties are determined by ind
ing the sample with loading forces up to several tens
microNewtons.8,9 A simultaneous high sensitivity and a larg
dynamic range are especially important when using can
vers to measure surface stress such as in chemical or the
sensors.10–13

One of the simplest and most sensitive techniques for
detection of cantilever deflections is based on optical be
deflection ~‘‘optical lever’’ !, using a two-segment~split!
photodetector.14,15 One of the drawbacks of this detecto
however, is its limited dynamic range. The latter is defined

a!Electronic mail: tschaeff@gwdg.de
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the measurement range between a lower and an upper d
tion limit over which cantilever deflections can be measur
The lower detection limit is defined as the smallest meas
able deflection. The upper detection limit is defined as
cantilever deflection for which the signal deviates to a spe
fied extend~e.g., 10%! from a linear response. A large dy
namic range is necessary if the deflections vary greatly
magnitude.

There is a compromise, however, between a small lo
detection limit and a large upper detection limit of the tw
segment detector. It will be shown in this article that t
parameter mediating this compromise is the focused spo
ameter on the cantilever. A large focused spot diameter le
to a small lower detection limit~i.e., a high sensitivity! but
also a small upper detection limit. A small focused spot
ameter causes a large lower detection limit~i.e., a low sen-
sitivity! but also a large upper detection limit. For regula
sized cantilevers, the upper detection limit can be increa
by decreasing the focused spot diameter but at the sacr
of detection sensitivity. Unfortunately, small, low-noise ca
tilevers do not allow significant variation in the focused sp
diameter.16–18

It was shown earlier that the lower detection limit can
reduced under certain circumstances by using an a
detector.19 Here, the focus will be on the linearity and dy
namic range aspects at large cantilever deflections.

II. EXPERIMENT

An incident collimated laser beam of the wavelengthl
568665 nm from a single-mode laser diode was focused
a spot on the cantilever~Fig. 1!. The one-dimensional pro
9 © 2002 American Institute of Physics
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jection of the irradiance distribution of the spot onto t
p-axis, I c(p), had a Gaussian shape with a 1/e2 diameter of
w51061 mm in the longitudinal direction of the cantileve
and with a diameter of 560.5mm along the width of the
cantilever. An uncoated silicon nitride cantilever without
integrated probe tip was used, which wasL51261 mm in
length and 560.5mm in width.18 The focused spot was po
sitioned between the clamped end of the cantilever (p50),
referred to as base, and the free end of the cantilevep
5L), referred to as tip, such that the spot center was loca
at pc5661 mm away from the cantilever base. The lig
beam reflected from the cantilever was projected onto
detector at the distancef 57565 mm from the cantilever,
where it produced a spot with a light power ofPdet51.34
60.05 mW and with an irradiance distributionI d(s). I d(s)
denotes the one-dimensional projection of the irradiance
tribution onto thes axis. The detector consisted of a line
array of 16 photodiode segments. In a previous study,
signals from the array detector segments were electronic
added after selecting appropriate gain factors.19 Here, the
signals from the segments were read out individually usin
multiplexer, allowing for the measurement of the detec
irradiance distributionI d(s).

The cantilever was deflected by bringing its tip (p5L)
into contact with a stiff sample surface~freshly cleaved mica
in air! and vertically ramping up the sample with the help
a piezoelectric actuator positioned below the sample. T
caused the spot on the detector to move. The resulting
diance distributionI d(s) was recorded continuously as

FIG. 1. Schematic of the detection setup with an array detector. An inci
light beam was focused onto the cantilever, where it produced an irradi
distributionI c(p). The light reflected from the cantilever was projected on
the detector at distancef , where it produced a detector irradiance distrib
tion I d(s) that was measured by the linear arrangement of the array det
of detector segments. When the cantilever deflected byz due to an applied
force, the distribution shifted laterally.
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function of cantilever deflection,z, and was plotted for three
different cantilever deflections~Fig. 2!. At zero cantilever
deflection (z50), the irradiance distribution on the detect
was symmetric and nearly Gaussian in shape~Fig. 2, rectan-
gular markers!. This was due to the Gaussian emission ch
acteristics of the laser diode and to the fact that almost a
the incident light was reflected from the planar cantilev
surface. When the cantilever was deflected verticallyz
50.4l), the spot translated laterally on the detector~Fig. 2,
crossed markers!. However, it not only changed in positio
but also in shape, i.e., with a decrease in height and an
crease in width. At even larger cantilever deflectionsz
50.8l), the spot further deformed~Fig. 2, triangular mark-
ers!.

For the large cantilever deflections, it became appar
that the spot on the detector moved significantly away fr
where it was at zero deflection. A regular two-segment
tector that simply detects the difference in power incident
the two segments~one segment ats,0, the other one ats
.0! does not generate much variation in the difference s
nal at large cantilever deflections: It ‘‘loses sight’’ of the sp
once the power of the spot has shifted predominantly o
one of the segments~e.g., comparez50.4l andz50.8l in
Fig. 2!.

The array detector, on the other hand, continues to tr
the spot up to large cantilever deflections, since it measu
its complete irradiance distribution. The question is whet
a suitable signal can be extracted from that distribution.
order for such a signal to be useful as a measure of cantil
deflection, it should be of high sensitivity and have a hi
linearity and a large dynamic range. In the following, first t
theoretical lower and upper detection limit of a two-segm
detector is derived. Then, a method is presented for the m
surement of cantilever deflection by the array detector,
lizing the additional information obtained about the irrad
ance distribution.

nt
ce

tor

FIG. 2. Irradiance distribution of the reflected beam on the array detecto
different cantilever deflections. At larger cantilever deflections~z50.4l;
z50.8l!, the reflected beam not only shifted laterally, but also increase
width and decreased in maximum irradiance. This is due to the fact th
bent cantilever acts as a curved mirror. Theoretical calculations~solid lines!
match the experimental data.
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III. THEORY

A. Irradiance distributions

The incident laser beam produces a focused spot on
cantilever with a one-dimensional Gaussian irradiance dis
bution in longitudinal direction of the cantilever~Fig. 1!:

I c~p!5A8

p

P0

w
e22[2(p2pc)/w] 2

, ~1!

where P0 is the total incident light power,w is the 1/e2

focused spot diameter, andpc is the position of the center o
the spot on the cantilever. According to Fraunhofer diffra
tion theory, the one-dimensional irradiance distribution
the detector is20

I d~s,z!5
k

2p f U E0

L

dp Ec~p!e2ikzh(p)e2 iksp/ fU2

, ~2!

wherek52p/l is the wave number of the incident light,l is
its wavelength,f is the distance from the cantilever to th
detector,L is the length of the cantilever,h(p) is its normal-
ized shape, andz is the deflection at its tip (p5L). Ec(p) is
the scalar wave function of the light in the cantilever plan
uEc(p)u25I c(p). Ec(p) is assumed to be real. It is require
that the cantilever deflection be small compared to its len
z!L. This requirement allows the movement of the tip
the cantilever to be approximated as a vertical displacem
only, without horizontal shift. At larger deflections, the ho
zontal position of the tip would move significantly towa
the cantilever base, since the length of the cantilever is fix
This requirement,z!L, is relaxed compared to the one us
previously, in whichz!l was required.20 Equation~2! gives
a good approximation of the detector irradiance distribut
if the detector is placed in the far field of the reflected lig
beam, i.e.,f @pw2/(2l).

In force spectroscopy experiments, a force acts on the
of the cantilever. Consider the normalized shape of a flexi
rectangular cantilever:21

h~p!5
p2~3L2p!

2L3 ~3!

h(p) is normalized such thath(0)50 andh(L)51. It is due
to this flexible nature of the cantilever that the detector ir
diance distribution is distorted in size and in shape at lar
cantilever deflections, because under such conditions
cantilever acts as a curved mirror. While some light is p
mitted to spill over the length of the cantilever~at its base
and tip!, it is assumed that no light spills over the width
the cantilever. The asymmetric spot needed to meet this
quirement is often produced by the elliptical beam of t
laser diode itself. This requirement permits the one- dim
sional mathematical treatment of the system.

I d(s,z) is calculated numerically with parameters ide
tical to the ones from the experiment~w510mm, pc

56 mm, f 575 mm, l5686 nm, L512mm, and Pdet

51.34 mW requiringP051.36 mW!. I d(s,z) is plotted atz
50, z50.4l, andz50.8l ~Fig.2, solid lines!. At z50, the
theoretical irradiance distribution is nearly Gaussian
shape. Atz50.4l, the center of the distribution is shifted t
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the right-hand side but its height is decreased and its w
increased. Atz50.8l, the theoretical distribution furthe
deforms and becomes asymmetric in shape: to the left-h
side of the peak of the distribution, a deflection point aris
(s'1 mm), due to diffraction effects. There is good agre
ment between the experimental and theoretical distributio
The theoretical distributions were generated by using o
the measured experimental parameters. In particular, t
are no free parameters in the theory and no curve fitting
the experimental curves was performed.

B. The two-segment detector

Expressions are now given for the lower and the up
detection limit of a conventional two-segment detector. T
derivation presented here builds upon previous theoret
treatment,20 where the effect of an adjustable aperture on
detection sensitivity was investigated.

The signal detected by a two-segment detector is
difference in light power incident on the two segments,PA

2PB . To normalize the signal to a range of@21;1#, PA

2PB is divided by the constant~time-averaged! total power
incident on the detector,Pdet5PA1PB . The difference signal,
D, thus becomes

D~z!5
PA2PB

PA1PB
5

1

Pdet
E

2`

1`

sgn~s! I d~s,z! ds, ~4!

whereI d(s,z) is the one-dimensional irradiance distributio
on the detector@Eq. ~2! and Fig. 1#. The detector was as
sumed to have 100% responsivity and to be large enoug
detect all the light power reflected from the cantilever:

Pdet5E
0

L

dp Ic~p!. ~5!

When the cantilever deflection at its tip is smallz
!l/(2p)), the difference signal is linear inz,

D~z!5
z

zmax
, ~6!

where20

zmax5lS 4

Pdet
E

0

L

dpE
0

L

dp8Ec~p!

3Ec~p8!
h~p!2h~p8!

p2p8 D 21

. ~7!

When the cantilever deflection becomes larger„z
.l/(2p)…, D(z) becomes nonlinear and Eq.~6! is no longer
valid. This is because Eq.~6! requires the power shifted from
one to the other segment to increase linearly with cantile
deflection. But less and less power shifts at increasing
flection due to finite spot size and power. For large defl
tions, when the spot on the detector is shifted by a la
distance compared to its width, almost all of the power
incident onto one segment~PA'Pdet, PB'0!, and the dif-
ference signal becomes saturated atD(z)'1. Therefore, the
two-segment detector has a finite upper detection limit. It c
be shown thatzmax corresponds to the upper detection limit
a nonlinearity of,21.3% is required. For the experiment
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parameters used,zmax'0.266 l'182 nm @Eq. ~7!#. Such a
maximum detectable deflection is too small for many fo
spectroscopic applications.

The minimum detectable cantilever deflection, i.e.,
lower detection limit,zmin , is obtained at a signal-to-nois
ratio ~SNR! of one: D(zmin)/Nr51, whereNr is the funda-
mentally limiting photonic shot noise in the difference sign
~root-mean-square power fluctuations as a fraction of the
tal power at the detector!:

Nr5A2hcD f

lPdet
5A1

n
. ~8!

h is Planck’s constant,c is the speed of light, and the dimen
sionless parametern is the mean number of photons that a
counted within the measurement bandwidth,D f . Equation
~8! reflects the fact that shot noise arises from photon co
ing and is described by Poisson statistics, where the varia
of the number of counted photons equals the mean num
of counted photons~note that the square ofNr is the shot-
noise contribution to the relative intensity noise!. The rela-
tive width of the dynamic range is calculated using Eq.~6!:

zmax

zmin
5

1

Nr
5An. ~9!

It is therefore determined only byn, the number of photons
counted within the measurement bandwidth, and is indep
dent of the particular shape of the detector irradiance dis
bution.

For high-sensitivity detection, a large SNR is requir
and thus the lower detection limit,zmin , needs to be mini-
mized. The focused spot diameter,w, has a strong effect on
the lower detection limit. There is a compromise, howev
between the lower and upper detection limit. To demonst
this compromise,zmin and zmax are plotted versus. the no
malized focused spot diameter,w/L ~Fig. 3!. The parameters
used for this plot areD f 510 kHz andP051.36 mW, again
matching the experimental parameters. To make use of

FIG. 3. Theoretical dynamic range of a two-segment detector as a fun
of the focused spot diameter. The dynamic range is the range betwee
lower and the upper detection limit~highlighted area!. This points out the
compromise between a small lower and a large upper detection limit~de-
fined here for 21.2% nonlinearity!: If the upper detection limit is increase
by decreasing the focused spot diameter, the lower detection limit incre
as well ~for w/L,1!. Therefore, a large upper detection limit goes at t
expense of low detection sensitivity.
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high-slope area at the tip of the deflected cantilever, the
sition of the focused spot on the cantilever was adjusted
pending on the diameter of the spot:

pc5H L2w/2; w<L

L/2; w.L ~10!

This somewhat arbitrary condition fixes one of the 1/e2 irra-
diance points to the tip of the cantilever, ensuring that a la
fraction of the incident beam is incident close to the
where deflections are largest and therefore approxima
opimizing the detection sensitivity for the given spot diam
eter. It can be seen~Fig. 3! that for focused spot diameter
smaller than the cantilever length (w/L,1), zmin decreases
for increasing spot diameters, reaching a minimum of'3.6
310213 m atw/L'0.9. At this point, the detection sensitiv
ity is highest. For spot diameters larger than the cantile
length (w/L.1), zmin increases again, reflecting a reduc
detection sensitivity due to light lost over the edges at the
and the base of the cantilever. This confirms the finding t
the detection sensitivity is optimized when the focused s
approximately fills the cantilever, justifying the choice of th
focused spot diameter in the experiment.22,23

For focused spot diameters below the cantilever len
(w/L,1) it can be seen thatzmax decreases with the sam
rate aszmin ~Fig. 3!. This is a manifestation of the compro
mise between a low-noise and a large-upper-limit detec
@Eq. ~9!#. For the parameters used in the experimental se
zmax/zmin'4.83105. The dynamic range therefore covers b
tween 5 and 6 orders of magnitude of measurable cantile
deflection ~highlighted area in Fig. 3,w/L,1!. For w/L
.1, light is lost over the edges of the cantilever and few
photons will reach the detector, decreasing the dyna
range. It will be shown next that an array detector increa
the upper detection limit without sacrificing detection sen
tivity by simply increasing the number of detector segmen

Note thatpc56 mm was used in the experimental setu
which is slightly smaller than the 7mm that would have been
a better choice according to Eq.~10!. Note also that there is
a slight discontinuity in the slope ofzmin and zmax at w/L
51 ~Fig. 3! due to the respective discontinuity of the slo
of pc @Eq. ~10!#.

C. The array detector

The mean~first moment!, s̄(z), of the detector irradiance
distribution,I d(s,z), is defined as

s̄~z!5
1

Pdet
E

2`

1`

s Id~s,z! ds, ~11!

where a detector large enough to detect all light power
flected from the cantilever is assumed again. Mathematica
the only change to the difference signal of the two-segm
detector, Eq.~4!, is the replacement of ‘‘sgn~s!’’ by ‘‘ s.’’ This
functional form yields an optimum measure of cantilever d
flection for an approximately Gaussian detector irradian
profile.19 Equation~11! can be expanded to

on
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s̄~z!5
k

2p f Pdet
E

0

L

dpE
0

L

dp8 Ec~p!Ec~p8!

3e2ikz[h(p)2h(p8)]E
2`

`

ds s e2 iks(p2p8)/ f . ~12!

Using the Dirac Delta function defined asd(x)
5 1/(2p)*2`

` e2 isx ds one obtains by partial integration wit
respect top8:

s̄~z!5
f

ikPdet
E

0

L

dp Ec~p!e2ikzh(p)

3H @Ec~p8!e22ikzh(p8) d~p82p!#p850
L

2E
0

L

dp8d~p82p!
d

dp8
@Ec~p8!e22ikzh(p8)#J

5
f

ikPdet
H 1

2
@Ec

2~p!#p50
L

2E
0

L

dpEc~p!e2ikzh(p)
d

dp
@Ec~p! e22ikzh(p)#J

5
f

ikPdet
H 1

2
@Ec

2~p!#p50
L 2E

0

L

dp Ec~p! Ec8~p!

12ikzE
0

L

dp Ec
2~p! h8~p!J ~13!

The factor 1/2 in the first term in the curly brackets aris
because the integration overp covers only half of the~sym-
metric! Delta singularity at bothp50 and p5L. The first
and second term in the last line cancel and the mean of
detector irradiance distribution simplifies to

s̄~z!5«
2 f

L
z, ~14!

where the dimensionless parameter« is

«5
L

Pdet
E

0

L

I c~p!h8~p!dp. ~15!

Equation~14! relates the mean of the detector irradiance d
tribution, s̄(z), to the cantilever deflection,z. It can be seen
that s̄(z) is linear inz. This is a result that is not obviousa
priori , since the spot on the detector deforms at large defl
tions. Apparently, this does not affect the linearity ofs̄(z).
The parameter« represents the deviation from a hypothetic
setup with a planar cantilever„h(p)5p/L… that extends be-
yond the base and the tip, such that all incident light is
flected («51). Comparing Eq.~14! with Eq. ~6! indicates a
similar linear relationship for both the array detector and
two-segment detector, but the array detector does not req
small cantilever deflections,z!l/(2p). It is therefore ca-
pable of measuring larger cantilever deflections than the t
segment detector.

For the experimental parameters,«'1.07 and s̄(z)
'(1.333104) z. When the cantilever deflects by 1 nm, f
example, the mean of the detector irradiance distribut
s

he
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translates by'13.3 mm. Alternatively, one can also write
s̄(z)'(9.15 mm)z/l, i.e., the mean of the distribution
moves bys̄(l)'9.15 mm when the cantilever deflects b
one wavelength,z5l. Since this translation is similar in siz
to the width of the spot on the detector~7.4 mm, estimated a
z50 between the 1/e2 irradiance points!, the translation of
the spot on the detector is on the order of its width when
cantilever deflects by one wavelength. Even though this
lation was derived for these particular experimental con
tions, it also holds true for other choices off , l, L andw, as
long as the focused spot diameter approximately fills
cantilever~w/L'1!. When the focused spot on the cantil
ver becomes smaller, the width of the detector irradian
distribution becomes larger and the spot translates b
smaller fraction of its width for the same cantilever defle
tion, decreasing the detection sensitivity. According to E
~14!, s̄(z) could be made arbitrarily large for a givenz by
increasingf , for example. But obviously this will not in-
crease the precision in determinings̄, since the spot width
would also increase proportionally tof . The detection sensi
tivity would therefore remain the same.

IV. RESULTS AND DISCUSSION

The array detector is considered in comparison to
two-segment detector with respect to linearity and dynam
range. First, it is discussed how well the two-segment de
tor can measure large cantilever deflections. One can re
the measured cantilever deflection,zm

2SD, to the actual, physi-
cal deflection,z, by rewriting Eq.~6! as

zm
2SD~z!5zmaxD~z!. ~16!

D(z) is the difference signal produced by the two-segm
detector andzmax is the scaling factor for obtaining the quan
titative measurement of the deflection,zm

2SD, in units of
meter. Equation~16! reflects the principle by which all de
flection measurements using the conventional two-segm
detector are being performed. It is possible to directly cal
late zmax by using Eq.~7! ~yielding a theoretical value o
'182 nm!, but instead,zmax5160 nm is determined experi
mentally by the usual calibration procedure in which t
slope of he force curve~‘‘force spectrum’’! in the linear
range~here: 0 nm<z<50 nm! is measured. This way, mea
surement inaccuracies of the experimental parameters~in-
cluding z-piezo calibration! are neutralized, facilitating a
comparison between the linearities of the two-segment de
tor and the array detector.zm

2SD~z! is plotted as a function of
z ~Fig. 4, diamond-shaped markers! with D(z) determined
from the measured detector irradiance profile. It can be s
that the measured cantilever deflection was linear only
small actual cantilever deflections~z,100 nm!. At larger ac-
tual deflections, the measured deflections became asymp
cally limited at zmax'160 nm, reflecting the fact that th
difference signal,D(z), approached unity. One can define
nonlinearity coefficient,x, as

x512
zm

z
, ~17!
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with zm/z being the ratio of measured to actual cantilev
deflections.x is zero for a perfectly linear response. Fro
Fig. 4 ~diamond-shaped markers!, it follows that the signal
became 10% nonlinear at an actual cantilever deflection
'115 nm. When the cantilever was further deflected,
signal became 21.3% nonlinear at an actual deflection
'161 nm ~'zmax! and finally became saturated at ev
larger deflections. This saturation was not electronic in
ture, but was rather due to the spot being shifted all the w
onto one of the two segments. Even though it is possible
principle to generate a nonlinear correction curve via a c
bration force curve, a linear dependency is preferred beca
it is easier to work with and because a correction wo
increase the noise of the measurement. Therefore, satur
is inherent to the two-segment detector. These results im
that when using a setup optimized for high sensitivity an
cantilever with a flexural spring constant of 10 mN/m, t
upper detection limit is reached at a force of only 1–2 n
This force is smaller than those of interest in many appli
tions.

The array detector can be discussed in a similar man
i.e., with respect to how well it can measure large cantile
deflections. For that purpose, relate the measured cantil
deflection,zm

AD, to the actual, physical deflection, z, by r
writing Eq. ~14! as

zm
AD~z!5

L

2 f e
s̄~z!. ~18!

s̄~z! is the signal produced by the array detector andL/(2 f e)
is the scaling factor for obtaining the quantitative measu
ment of the deflection,zm

AD, in units of meter. Just as in th
case of the two-segment detector, this scaling factor could
directly calculated using Eq.~15! ~yielding a theoretical
value of '7.5031025!, but instead, L/(2 f e)'8.15
31025 is determined experimentally by a calibration proc

FIG. 4. A force curve recorded by the two-segment detector and by the a
detector. In the case of the two-segment detector~diamond-shaped markers!,
the measured cantilever deflection became 10% nonlinear at an actua
tilever deflection of 115 nm. For the array detector, the measured defle
stayed within 10% nonlinearity up to 580 nm~circular markers!, even
though the detector irradiance distribution became quite distorted~Fig. 2,
triangular markers!. But this nonlinear deviation above 580 nm is only d
to the fact that the spot on the detector moved beyond the active det
area. Adding more segments would keep a linear dependency for even
deflections, as the ideal curve indicates~solid line!.
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dure, in which the slope of the force curve in the linear ran
~here: 0 nm<z< 400 nm! is measured.zm

AD~z! is plotted as a
function of z~Fig. 4, circular markers!, with s̄(z) determined
from the measured detector irradiance profile. It can be s
that the measured cantilever deflection was linear up to m
larger deflections than it was in the case of the two-segm
detector. Only at actual deflections over 500 nm, the m
sured deflection,zm

AD, started to deviate from a linear curv
with unit slope~Fig. 4, solid line!. This, however, is simply
due to the fact that the spot moved beyond the active dete
area~see also Fig. 2!. A linear behavior would be maintaine
for much larger deflections if the number of segments w
increased to cover a larger area. The missing probe tip
the resulting variability in the sample contact could acco
for some deviations of the experimental values from the id
curve at deflections below 500 nm~Fig. 4!.

The fact that the scaling factor that relates measured c
tilever deflection to the signal from the detector could
calculated using Eq.~16! for the two-segment detector or Eq
~18! for the array detector, respectively, suggests that
experimental calibration procedure, in which a physical fo
curve is acquired on a hard surface, might be avoided
tirely. It may simply be necessary to calculate the respec
scaling factor using the experimental paramet
(L, w, pc, l, f ) measured up to the required accuracy. T
would have the advantage that the force-sensing tip wo
not have to be brought into contact with any surface bef
the actual measurement, therefore simplifying the exp
ment and avoiding possible tip contamination. The spr
constant of the cantilever, for example, could then directly
determined from a thermal noise spectrum,24,25 without the
need for the preceding calibration measurement. One pra
cal problem with this approach is that the focused spot ne
to be accurately placed on the cantilever. The error in sl
introduced by this placement uncertainty is estimated to
about 5%. Furthermore, in AFM setups for use with liquid
the quality and size of the spot on the detector is affected
optical media and interfaces in the beam path~e.g., the liquid
cell!. The array detector, however, could be used to perfo
an immediate ‘‘spot quality’’ assessment similar to t
method of D’Costa and Hoh,26 with the advantage that th
detector would not have to be moved manually.

In the theory, a functional shape of the cantilever w
chosen that reflects a quasistatic force acting on the tip. T
choice is validated by the good agreement between exp
mental and theoretical values in Fig. 2. During dynamic m
croscope operation, however, the detailed motion of the c
tilever is more complex. For example, dynamic instabiliti
close to the sample surface can occur in force curves,
torting the cantilever shape.27 An array detector might be
useful for deducing the functional shape of the cantile
during such dynamic processes directly from the detec
irradiance profile.

It was mentioned that adding more segments to the a
detector increases its upper detection limit. For the num
of segments used here, the measured deflection became
nonlinear~with respect to its linear fit! at an actual deflection
of '580 nm. Therefore, if,10% nonlinearity is required
within the dynamic range, the upper detection limit was m
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sured to be larger by a ratio of 580/115'5.0 for the array
detector than for the two-segment detector. One could ea
increase this ratio by simply adding more segments to
array detector. However, the ratio is theoretically limited
the requirementz!L @Eq. ~2!#. Relating this requirement to
that for the two- segment detector,z!l/(2p) @Eq. ~6!#, one
estimates a maximum ratio of 2pL/l'110. This would
raise the upper detection limit~at ,10% nonlinearity! of the
array detector to approximately 13mm. Another limitation
that becomes important for small cantilevers is given by
geometric arrangement of the cantilever with respect to
surface: The support chip crashes into the surface atzcrash

5L sin(a)1lt cos(a), wherea is the tilt of the cantilever with
respect to the surface andl t is the length of the tip. For a
small cantilever (e.g.,L512mm), the maximum deflection
is zcrash'6.0mm, compared tozcrash'21mm for a large can-
tilever (L5100mm) ~using a typical tilt ofa510° and a tip
length of 4mm!.

A continuous detector irradiance distribution was a
sumed in the theoretical calculation of its mean. In the
periment, there are slightly different conditions, because
distribution was integrated over the finite size of each s
ment. If the width of the distribution were small compared
the segment size, the measured mean would not be line
cantilever deflection but would exhibit a step-like behavi
This effect occurs because such a case resembles the b
ior of a two-segment detector, with contributions to the me
only when the narrow distribution crosses a segment bou
ary. In the case of a Gaussian distribution profile with a 1e2

width of at least twice the segment size, it is estimated fr
a simple calculation~data not shown! that the deviation of
the mean in both slope and absolute value is below 1% of
true values. Since the 1/e2 width of the distribution atz50
in Fig. 2 is approximately 7.4 times the segment size, s
an effect was entirely neglected here.

It was shown for a special case that the lower detec
limit, zmin , was lower by a ratio of'5 for the array detecto
compared to the two-segment detector, making the array
tector suitable for high-sensitivity detection.19 For a Gauss-
ian focused irradiance profile like the one used here,
ratio decreased to approximately 1.25. The lower detec
limit, zmin , was calculated as'3.6310213 m50.0036 Å.
Experimentally, a deflection this small could not be detect
because other noise sources~such as laser noise! contribute
significantly. Therefore, the relative width of the dynam
range, Eq.~9!, was mostly determined byzmax. It is not
possible, however, to change an experimental parameter
as the focused spot diameter in order to raise the theore
lower detection limit to the level of the experimental low
detection limit, with the intention of increasing the expe
mental dynamic range at the same detection sensitivity. S
a procedure does not work because the experimental lo
detection limit also increases by this procedure. In gene
the highest experimental sensitivity is achieved for the hi
est theoretical sensitivity. Also, in the case of small cant
vers, one cannot easily decrease the focused spot diame
gain dynamic range because of optical limitations.

In the theory for the two-segment detector, it was fou
that the relative width of the dynamic range was 4.83105. In
ily
e

e
e

-
-
e
-

in
.
av-
n
d-

e

h

n

e-

is
n

,

ch
al

ch
er
l,
-
-
r to

d

practice, however, an analog-to-digital converter th
samples the difference signal with a bit depth of typically
can provide a relative width of at most 216'6.63104. If
0.05 Å were the lowest deflection that could be sampl
then the practical dynamic range would be at most 330 n
The array detector, on the other hand, does not have su
sampling limitation, sinces̄(z) is calculated from the digi-
tized signals from many segments.

V. CONCLUSION

An array detector combines a high sensitivity and a la
dynamic range. Its lower detection limit is comparable to
smaller than that of a two-segment detector, and its up
detection limit is only restricted by the size of the detec
and by geometrical constraints of the cantilever. Therefo
an array detector overcomes the relatively small upper de
tion limit of the two-segment detector without sacrificin
sensitivity. In the particular case of a small cantilever with
focused spot diameter nearly optimized for high-sensitiv
detection, the experimental upper detection limit~at 10%
nonlinearity! was increased from 115 nm for a two-segme
detector to 580 nm for an array detector. Theoretically,
upper detection limit could be increased up to 13mm by
increasing the number of array detector segments. The m
of the detector irradiance distribution is a linear function
cantilever deflection, even though the shape of the distri
tion becomes distorted at larger deflections. In addition
having a large dynamic range, no mechanical adjustme
such as centering the beam on the detector are required
an array detector.
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