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Optimized detection of normal vibration modes of atomic force microscope
cantilevers with the optical beam deflection method
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Recently, higher-order normal vibration modes of atomic force microscope cantilevers were utilized
for functional imaging applications. Here, we present a detailed theoretical investigation of the
sensitivities with which these modes are detected using the optical beam deflection method. The
detection sensitivities depend strongly on the size and position of the focused optical spot.
Optimization of the sensitivities is performed for the individtiansversgnormal modes. For the

case that multiple normal modes need to be detected simultaneously, a universal sensitivity function
is constructed. This function generates accurate values for the detection sensitivity as a function of
spot diameter and mode number. Finally, different optimization strategies for the simultaneous
detection of multiple normal modes are presented2@5 American Institute of Physics
[DOI: 10.1063/1.1872202

I. INTRODUCTION is focused to a spot on the cantilever and reflected from it

_ ) ) _ _ onto a position-sensitive photodetector, whereby angular de-
Since the invention of the atomic force MIcroscbpe fiections of the cantilever are detected. A theoretical formal-
(AFM), both static and dynamic modes have been used fogm for the sensitivity with which cantilever deflections are

the measurement of sample properties in various environgetected was developed based on optical diffraction
mental conditions. Prominent examples for imaging mode§heory_25,26 Using this formalism, the thermal noise in the

: 3
are thtz_céontact modethe tapping modé;’ and noncontact  AFM was calculated using a modal decompositiboprrec-
modes.™ Force spectroscopic measurements can be pefions in thermal spring constant calibration due to a finite

: NGa : -12
formed either staticaly” or dynamically” size and position of the focused spot were derited@his

~ The dynamic imaging and spectroscopy methods tradifsrmalism was also used to show that there carfamos)
tionally utilize the first norma(fundamentalvibration mode pole-zero cancellations that lead to a significantly reduced
of the cantilever. It has been shown, however, that highergetection sensitivity for higher-order modds.

order normal modes can be also used for functional imaging  Here, we present a detailed quantitative analysis of the
of surfaces. Minneet al.” have measured surface elasticity ggngitivities with which the normal modes are detected using
by driving a cantilever that was partially coated with zinc yhe optical beam deflection method. First, the formalism for

oxide at the4 i_)econd normal mode. In atomic force acoustighe gptical detection sensitivity is extended to a more general
microscopy,“*° ultrasonic sample surface vibrations in the ca5e . Second, the functional description of the normal modes
megahertz range are coupled to the AFM cantilever. The reg reyiewed and approximations are given. Third, the detec-
sulting cantilever dynamics can be modeled only if higher-;qn sensitivities as a function of diameter and position of the

order normal modes are includetLikewise, higher-order  focsed spot for different normal modes are calculated and
normal modes underlie the “forest of peaks” frequency SpeCgiscussed. Fourth, optimization of the detection sensitivities
trum obtained in tapping mode in Ilqufa..ngher-order NOr- for the individual normal modes is performed. Fifth, simul-

mal modes were used to obtain material contrast on heterqaneoys detection of multiple normal modes is discussed. Fi-
geneous surfacé§:' Furthermore, it has been shown that @nally, different optimization strategies for the simultaneous

quantitative description of tapping mode AFM is possibleyetection of multiple normal modes are presented. In all
only if the simultaneous excitation of higher-order normal .55eg quantitative results are given.

modes is considered. It is thereby possible to reconstruct

the time course of the tip-sample forceThe feasibility for

spatially resolved force spectroscopy by the simultaneous e, THEORY

citation of multiple normal modes has been propo252ed. . . o
For a quantitative interpretation of the measurement re'—A" Optical detection sensitivity

sults, the amplitudes of the normal vibration modes need to  The sensitivity of the optical beam deflection method

be accurately determined. The most widespread method favas derived using classical diffraction theory for the special

detecting the deflection of an AFM cantilever is the opticalcase when the axis of the incident optical beam and the axis

beam deflection methdd:?*In this method, an optical beam of thez scanner are perpendicular to the cantilever pfarg.

Here, we derive the more general case for an arbitrary angu-
IFAX: +49 (251) 833-3602; electronic mail: tilman.schaeffer@uni- lar orientation of the incident beam, the scanner, and the
muenster.de cantilever, respectively. For this purpose, we consider three
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the cantilever as viewed in the direction of the incident beam
(alongz),

Les =L cosB. (2

We also consider the effective deflection of the cantilever tip,
des, @s viewed in the direction of the incident beam. When
the z scanner deflects the cantilever thyalongz), then the
actual cantilever deflectiotalong z;) is d/cose. In the di-
rection of the incident beam, this appears as

cospB
et dCOSa @
FIG. 1. Schematic of the optical beam deflection setup. The incident beam,
the scanner, and the cantilever are arbitrarily tilted with respect to each othdhh most AFMs, a split photodiode is used as a detector, de-
(with anglesa and B). Three different reference frames are therefore COﬂ-|ivering as detection Signa| the difference in incident power

sidered: That of the incident beafn,,z,), that of the scanneixs,z), and _ ’ ; :
that of the cantilevefx.,z,). The incident beam has a Gaussian irradianceon eaCh SeQmenPA PB' We define the optlcal_ detection .
profile in its focus,l,(x,), with a 1/e2 focused spot diameter and center  S€NSitivity for such a detector as the detection signal per unit
positionp, (both alongx,). Note that the focused spot is typically elliptical tip deflection in the direction of the scanner. By using Eq.

in shape, and that only the spot diameter algngs relevant for \tlr\ze optical (10) of Ref. 25 and substitutind.¢ and degs for L and z,
deflection sensitivity—the spot diameter along the cantilever w(okpen- - . . .

dicular to the paper planes arbitrary as long as no light power is spilled re_spectlyely, we eXtend_thIS gquatlon to pe valid for a setup
over the lateral cantilever edges. Viewed in the direction of the incidentWith arbitrary angular orientations of cantilever, scanner, and
beam, the cantilever appears shortened with an effective ldngth incident beam, respectively. The optical detection sensitivity

can therefore be written as

different coordinate reference fram@sg. 1): (1) that of the W wop,

incident beam with coordinatés,,,z,), (2) that of the scan- on(W, py) = UOL_f”<L_’L_)' (4)
ner with coordinategxs,z), and (3) that of the cantilever off eff Teff

with coordinates(x.,z,). The axis of the incident beam is Equation(4) is the product of a prefactor,

parallel to thez, axis, the axis of the scanner is parallel to 74P, COS3

the z; axis, and the undeflected cantilever is alongxhaxis. o= \/;m, (5)

The incident optical beam in an AFM is usually emitted
from a laser diode. Its shape is highly elliptidabpect ratio 4 factor,w/ L, that is proportional to the focused spot di-

1:2-1:3 and approximately Gaussian. This beam is focuse¢ymeter and a factor that depends on the functional shape of
to an elliptical spot on the cantilever, and is oriented suchne yiprating cantilever,

that the main axes of the spot are along the cantilever length .1
and along the cantilever width, respectively. Well within the 4 hy(@) - hi(q')
fo(u,v) = —zf dqf dg' — g
u
0o o0

depth of focus of the incident bearnfg,| < 7w?/(4\), the

one-dimensional irradiance distribution aloxgcan be writ- q-q’
ten as ( i 2
-4(q-v)°-4q -v
8 Py , Xexp{ > ] (6)
I(Xb) — —~_0 e—2[2(xb— pp)/w] , (l) u
T W

h,(g) is the normalized shape of the cantileysee below.
where w is the diameter of the focused spot at thef,(u,v) can be thought of as the “effective slope” of the
1/€?-irradiance points along, p, is the position of the fo-  section of the cantilever that is probed by the focused spot. It
cused spot on thg, axis, andP, and\ are the total power is this effective slope what is really measured by the optical
and wavelength of the incident beam, respectively. In Eqbeam deflection method. In the case that non-Gaussian fo-
(1), the positional variable along the direction perpendicularcused spots are used, the formulas need to be adjusted
to bothx, andz, (i.e., along the cantilever widthwas inte-  appropriately>
grated out. We note that the spot diameter along the cantile- In the case that a relative detection signal is uséy,
ver width is arbitrary as long as no significant light power is—Pg)/(Pa+P,), oo needs to be divided by the total power of
spilled over the lateral edges of the cantilever, i.e., as long athe reflected light,Pge=Pa+Pg=/5(x) dx. The require-
the spot diameter along the cantilever width is somewhaments for Eqs(4)—(6) to be valid are(a) the width of the
smaller than the cantilever widfR.This condition is often focused spotperpendicular to botk, andz,) is smaller than
automatically satisfied when considering the large aspect rahe width of the cantilever so that no significant light power
tio of the beam from the laser diode. When even larger asis spilled over the lateral edges of the cantilefaes discussed
pect ratios are required, additional cylindrical focusing opticsin the previous paragraph(b) the cantilever deflection is
or an adjustable apertlfF’emight be necessary. A slight spill small compared to its Iengfﬁ:|zeﬁ|<Leﬁ, and(c) the length
of light power over the lateral cantilever edges, howeverof the projection of the cantilever onto tlzg axis is much
does not significantly alter the results of this paper. For thesmaller than the depth of focus: sin(8) <7w?/(4\). In
diffraction calculations, we consider the effective length ofmost of the cases considered hdPg,=const, therefore op-
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timizing the sensitivity is approximately equivalent to opti-
mizing the signal-to-noise rati@n the case of fundamentally
limiting shot noise.

B. Functional shape of normal vibration modes

The functional shapes of the normal modes of free, un-
damped, transverse vibrations of a rectangular cantilever are
given by®

-1
h,(q) =( 2) COSk,g — coshk,(q

COSkp, + coshk,

SinK, + sinfix, (sin k,g —sinhk,Q) |. (7)

n denotes the mode number ahgqg) is normalized so that
at the baséq=0), h,(0)=0, and at the tidg=1), h,(1)=1.
The dimensionless wave numbexs, are the solutions of the
characteristic equation, cag coshx,=-1, with discrete so-
lutions x,=1.875, 4.694, 7.8557(n-1/2) for n=1,2,3,
=4, respectively. To circumvent computational inaccuracies
for large mode numbers rooted in the subtraction of similarly
large terms in Eq(7), we derived an approximation that is
much easier to computéy rewriting the hyperbolic func-

tions in terms of exponentials and dropping small t&rms  FIG. 2. Functional shapes of the first five normal vibration modes. The
n cantilever is clamped at its badeft side and free at its tigright side. The
(-1 [ 37 ~ k0 crosshatched areas outline the focused spots that “globally optimize” and
V2sin kg + — - | -e “tip optimize” the detection sensitivity for each mode. For the first and
second mode, these two spots are identical. For the third and higher modes,

h(q) =

e «n(1-a) larger detection sensitivities are achieved for a spot close to the base
+ , forn=4. (8) (globally-optimized spot, left-hand sigi¢han for a spot close to the tip
2 (tip-optimized spot, right-hand sigle

The functional shapes of the first five normal modes are
shown in Fig. 2. Common to all modes is that their maxi-duced. The point in each grayscale plot where the sensitivity
mum deflection and their maximum slope are located at thés globally optimized(from now on referred to as “globally
tip, with h/(1)=1.377, 4.781, 7.84%, for n=1,2,3,=4,  optimized detection sensitivity'ls marked with an X.” The
respectively. For the convenience of the following discus-point in each plot where the sensitivity is locally optimized
sion, we define the wavelengths of the vibration modgs, and closest to the tigfrom now on referred to as “tip-
as they appear in the direction of the incident begam, in  optimized detection sensitivity'is marked with a %.”

the projection onto they, axis): For the first normal modg-ig. 3(a)], globally optimized
o and tip-optimized detection sensitivities coincifler;/ og|
Ap=—Les- (9 =0.783 and are achieved when spot diameter and position
Kn arew/ L= 0.952 andpy/Les=0.569, respectively. In other

For large mode numbers, the mode wavelength equals twiords, optimum detection sensitivity for the first normal
times the distance between two central vibration nodes a&ode, which is the relevant mode in most ac-mode imaging

viewed in the direction of the incident beam. and spectroscopy techniques, is obtained when the spot di-
ameter is 95% of the effective cantilever length, and when
Ill. RESULTS AND DISCUSSION the spot center is positioned at 57% on the distance from the

cantilever base to the tip. The sensitivity decreases when the
spot diameter and position deviate from those optimum val-
The absolute value of the optical detection sensitivity asues. This result refines a previous finding, where the detec-
a function of spot diameter and positidmoth alongx, ) [Eq.  tion sensitivity for a rigid, hinged cantilever was shown to be
(4)] is displayed as grayscale plot for the first five normaloptimized when the spot diameter approximately equals the
modes of a clamped-free rectangular cantiley&igs. cantilever length and when the spot is positioned exactly at
3(a-3(e)]. The brightness encodes the absolute value of théhe center of the cantilevét? The outline of the optimum
sensitivity, where larger values of the brightness correspondpot(area within the 1¢*-irradiance valuesis shown on the
to larger absolute values of the sensitivity. It can be seen thatantilever{Fig. 2(a), crosshatched arga\ote that the size of
the detection sensitivity strongly depends on those focusethe spot along the width of the cantilever is arbitrary as long
spot parameterg¢diameter and positignand on the func- as no light is spilled over the lateral edges of the cantiléVer.
tional shape of the cantilevémode numben). To enhance For reference purposes, we note that the functional shape of
the quantitative aspect of the plots, contour lines are introa statically deflected cantileveny{p)=(3p?—p°)/2, such

A. Optimization of the detection sensitivity
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n=21/ 1 sensitivity would be higher for the spot close to the (tip-
optimized sensitivity;, as the highest slope always occurs at
the tip. An intuitive explanation for this result will now be
given. There are two effects for spots with a finite size that
affect the detection sensitivitysee Eq.(4)]: (1) The larger
the spot diameter, the higher the absolute value of the detec-
05 tion sensitivity.(2) The larger the absolute value of the ef-
fective cantilever slope in the section over which the focused
n=4 spot is distributed, the higher the absolute value of the de-
tection sensitivity. In other words, high detection sensitivity
is generally achieved when the focused spot is sized and
positioned such that it spans a large section of the cantilever
: over which the slope is of constant sign and of high absolute
+ value. For the third normal mode, it occurs that the advan-
M | 3 tage of a large spot diameter for the globally optimized ex-
|x global tremum weighs more than the advantage of a large effective
,““ = slope for the tip-optimized extremum. The outlines of the
globally optimized spot and of the tip-optimized spot are
displayed on the cantilever as the left and the right cross-
@ 2 hatched areas, respectivélig. 2(c)].
3+ For even higher normal modés=4), this trend contin-
4& ues; the globally optimized sensitivity is always larger than
2 y : the tip-optimized sensitivityfFigs. 3d) and 3e)]. Specifi-
0 05 10 05 1 o A
spot position, p,/Leq spot position, p,/L g cally, the globally optimized sensitivity is always= 2) the
local extremum that is second closest to the base. The out-
FIG. 3. (a)-(e) Optical beam detection sensitivity as a function of the fo- lines of the globally optimized spot and the tip-optimized

cused spot diameter and position as combined grayscale/contour plot, fi for the fourth and fifth normal m r ivel r
mode numbers=1-5. Areas with a brightdark) color correspond to large (gp()t or the fourth and fifth normal modes, espectively, are

(smal) absolute values of the detection sensitivity. The extremum with theSNOWN as th_e CrOSShaFChed areas in Figd) th de).
largest absolute value of the sensitivity for each maglebally optimized Separating two adjacent maxima, there is always a con-
is marked with an X,” the extremum closest to the tifip optimized is tour line of zero sensitivityFigs. 3b)-3(e), white contour

marked with a “.” Contour lines with zero sensitivity are present for ; o ; ; T
=2. (f) Globally-optimized and tip-optimized focused spot diameters andlmes]' This is because neighboring extrema of the sensitivity

positions for the different normal modes. The dashed/dotted lines symboliz&/€ Of_ altemat_ing sigirepresenting sections Of positive and
spot diameters and positions for mode numbers larger than 5. negative cantilever slopgsFor small spot diametersw

<A, the zero-contour lines are located at those spot posi-

as occurs during contact mode imaging or during forceions, Py, for which the cantilever slope is zerby(py/Ler)
curves, is very similar to that of the first normal vibration =0- For an increasing spot diameter, the contour lines ini-
mode. For such a statically deflected cantilever, optimunfi@lly point perpendicularly away from thg, axis, until the
detection sensitivity(|ogaid 00| =0.778 is obtained when SPOt diameter passes the value of the glopally optlmlzed sen-
the spot diameter is 94% of the effective cantilever lengthSitivity, after which some of the contour lines deviate from

and when the spot center is positioned at 58% on the distandBiS Perpendicular orientation. When spot parameters are
from the cantilever base to the tip. chosen on a zero-contour line, there will be zero detection

For the second normal mod€&ig. 3(b)], globally opti- sensitivity fqrthe respective modg. These_c_a_se; should the_re—
mized detection sensitivity(|o,/ oo =1.421) is achieved fore be avoided when the detection sensitivity is to be opti-
when the spot diameter and position avél.;=0.563 and Mized.

P/ Ler=0.763, respectively. The outline of such a spot is
shown on the cantilevégFig. 2(b), crosshatched argarhere

is a second local extremum of the sensitivity with a value of
about half of the global maximurfio,/ oy =0.685, for a The absolute values of the globally optimized detection
spot diameter and position of/L.z=0.474 andpy/Les  sensitivities and the corresponding spot diameters and posi-
=0.238, respectivelyfFig. 3(b)]. This local extremum of tions are listed in Table |. The absolute value of the globally
smaller value represents a focused spot that is distributed asptimized detection sensitivity is by far the smallest for

the cantilever in the section closer to the base where the1; it is only about half as large as those for the higher-order
slope is of opposite sign. modes. The reason for this is that when going from the first

For the third normal modé¢Fig. 3(c)], globally opti- to the second mode, the effective cantilever slope increases
mized detection sensitivity(|os3/ 09| =1.501) is achieved at a rate about twice as large as the rate with which the
when the spot diameter and position avfl .+=0.453 and focused spot diameter decreases. For higher-order modes,
pPoLesr=0.490, respectively. This result is surprising at first, these two rates are comparable, and the absolute value of the
as there are two other local extrema, one closer to the tip anskensitivity asymptotically plateaus &t,/oy| =1.557 forn
one close to the base. One might have expected that the5. Such a plateau does not occur in a simple geometric-

spot diameter, wiL

spot diameter, wiL ¢

spot diameter, wiL ¢

B. Globally optimized sensitivity
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TABLE I. Globally optimized and tip-optimized spot diameter, spot positionp,, and absolute value of the
detection sensitivity|o,|, as well as the mode wavelength,, as a function of the mode number, For n

=5, two lines corresponding to two equivalent expressions for spot diameter and position are diptgyed
(10—(13)]. The values for a statically deflected cantilever are also shown. Note that the optimized detection
sensitivity for mode number 1 is only about half of those for higher mode numbers.

Mode
number Globally optimized Tip optimized
n An/Lest W/ Lt Po/ Lest o/ ol W/ Lt Po/ Lest o/ ol
(statig -identical to tip optimized- 0.944 0.583 0.778
1 3.351 -identical to tip optimized- 0.952 0.569 0.783
2 1.339 -identical to tip optimized- 0.563 0.763 1421
3 0.800 0.453 0.490 1.501 0.325 0.862 1.368
4 0.571 0.335 0.353 1.560 0.233 0901 1371
=5 2/(n-1/2) 1.17/n-1/2) 1.24/(n-1/2) 1.557 0.814(n-1/2) 1-0.345(n-1/2) 1.370

0.586An/Le) 0.618A,/Leg) 0.407MAp/Le)  1-0.173A,/Le)

optics treatment, where the spot could be focused to a poimormal mode is by far the smallest, whereas all higher-order
at the tip of the cantilever where the slope is largest. In thisnodes are detected with about the same sensitiifitthe
case, the sensitivity would instead increase indefinitely foispot parameters are adjusted individupally
increasing mode numbers, sind€(1)—« for n— o0 For large mode numbers, the optimum spot diameter is
Based on these results, it is interesting to speculate that thexpected to be somewhat smaller than that for the globally
first normal mode, which is predominantly used in current acoptimized case above. The reason for this is that the tip is
imaging and spectroscopic techniques, might not be the mostree,” and therefore the distance between the tip and the last
advantageous with respect to sensitivity and resolution, agntinode before the tip is smaller than the distance between
compared to the higher-order modes. two central antinodes, thereby also reducing the optimum
For large mode numbers, the optimum spot diameter ispot diameter. The numerically accurate calculation yields
expected at about half the mode wavelength, This way, for the optimum spot diameter,
the spot can be distributed in the section between two anti-

) i ) | . 0.814
nodes, making the spot diameter as large as possible without W™ = 0.407A,,= ———L.4, forn=>5. (12
significantly “sampling” cantilever slopes of opposite sign. n-1/2
The numerically accurate calculation yields that the optimumrhe spot is positioned near the vibration node that is closest
spot diameter is even slightly larger, to the tip (compare Fig. 2 The numerically accurate calcu-

lation yields for the optimum spot position,
Wgoba) = 0586\, = — = forn=5. (10
S -2 ' (D — | 173 = (1-222)
Po = Leff . n= n-1/2 effs orn

Here we utilized Eq(9) with the approximation fok,. The
spot is consequently positioned near the vibration mode that =5. (13

is closest to the bas@xcluding the base, compare Fig. 2 again the spot diameter decreases monotonically for in-
The numerically accurate calculation yields for the Opt'mumcreasing mode numbers. In the limit of large mode numbers,

spot position, the spot diameter approaches zero, and the spot position ap-
1.24 proaches the tip of the cantilevgFrig. 3(f), dotted ling. In
pinglobal 0§18, = —1/2Leﬁ, forn=5. (11)  the limit of large mode numbers, the tip-optimized sensitivity
n- is =88.0% of the globally optimized sensitivity.

The spot diameter decreases monotonically for increasing

mode numbers. In the limit of high mode nun_ﬂ_Jers, the SPOb simultaneous detection of multiple normal modes

diameter approaches zero, and the spot position approaches

the base of the cantilev§Fig. 3(f), dashed ling If multiple normal modes need to be detected simulta-

neously, spot parameters need to be chosen that are as far as

possible away from all zero-contour lines for all respective

modes(Fig. 3). While it might be possible to find such pa-

rameters, it is much more straightforward to sacrifice a small
The absolute values of the tip-optimized detection sensiamount of sensitivity and to choose a spot close to the tip,

tivities and the corresponding spot diameters and positionespecially if a large number of modes need to be detected

are also listed in Table I. The tip-optimized detection sensisimultaneously. For example, we consider the spot diameters,

tivity is smallest forn=1 and asymptotically plateaus at wN%) and positionsprN'“p), that tip optimize the detection

o,/ 09g=1.370 forn=5. Just as in the case of the globally sensitivity for N=3, N=6, N=10, andN=20, respectively:

optimized sensitivity, the tip-optimized sensitivity of the first w/L.4=0.33, 0.15, 0.086, 0.042, ang},/L.+=0.86, 0.94,

C. Tip-optimized sensitivity
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ais tection sensitivities are generally obtained for identical ratios
& of spot diameter to mode wavelendihith Eq. (14) as con-
;; 10 dition]. Using this relationship, we construct a universal sen-
5b=05 sitivity function, Q,(u), by defining in the limit ofw—0
5 (i.e., N—c0) and forn>1:
2
3 0.0 1 w w
§ ] Qe(u):_o-n(_vl_s_)a (15)
054 Jo Lesr Left
5 10 15 20 25 30 whereu is the generalized mode number
mode number, n
Tspotdiameterand position; - - 1 ﬂ (16)
b 15 £=0.424 (tip-optimized) | O tip-optimized for N=3 u=i{n 2 L’
: A tip-optimized for N=6 eff
© &=02 | & tip-optimized for N=10 ) o )
S 10 O tip-optimized for N=20 Q. (u) is plotted in Fig. 4b) for different values of the pa-

rametere. From (). (u), the detection sensitivity for a given
spot diameter, spot position, and mode number can be found.
It turns out that accurate results are obtained even for small
mode numbers if simpléempirica) correction factors are

e
2

universal sensitivity,
o
o

05 introduced forn=1 andn=2: Given a spot of diametew
1.0 (W/Lgi=<0.3) that is positioned somewhere near the (tig
o 1.2 3 4 5 =0.5), the detection sensitivity for theth mode,o,,/ oy, is
generalized mode number, (n-1/2) wil o obtained from the universal sensitivity function as
FIG. 4. (a) Detection sensitivity for different spot diameters and positions as 0.876, if n=1
a function of mode numben. The sensitivity increases at first for increasing o, .
mode numbers, then exhibits a maximum, becomes negative, passes through — = Qs n-—-]— 1015, if n=2 (17)
a minimum, and asymptotically approaches zdfthe lines connect the 90 eff 1 if n=3.

markers to guide the eye(b) Universal sensitivity as a function of gener-

alized mode numberu=(n—1/2)w/Lyy, for different values ofe=(Lqg The error of this approximation i551%. For higher mode

-py,)/w. From the universal sensitivity function, the detection sensitivities mbersiand for smallek), the r irement on th t siz

for given spot diameters, spot positions, and mode numbers can be Iooké?!u ersa 0 S allee), e equirement o e spot size

up using Eq(17). can be progressively relaxdde., accurate results are also
obtained forw/L.4=0.3). For the first normal mode, alter-

0.96, 0.98, respectively. We plot the respective detection sefrative, simplir approximations can be found empirically:
sitiviies, oM (w9 N 5 2 function of [Fig, | 71/ (7oW/ Let) =1.078, 0.702, 0.344, 0,112 fer0.424, 0.2,

4(a)]. There are a number of observations that can be madg:’ _I(r)n.Z’o :teasr?tecrtgvegﬁes of). (u) are[see Fig. 4b)]: (a) the
(@ oﬁN’t'p) increases monotonically frams1-n=N. This is . estpabsolurt)e \F/)alue @ (a) ‘s located a?Lj=0 i84 and
because the slope of the cantilever close to the tip increasé%g e . N :
for increasing mode numberé) S NtiD) i largest at=N £=0.424[0(0.814=1.37Q. This re_sult is foun.d_ glso in
(per definition. (c) For n>N U(nﬁ‘,up) decreases at first Eqs.(lZ) anQ(13). Therefore, the universal sgnsnu_uty func-
passes throug.h sero. and e>’<hil:r;its a minimuid S Nip) ' tion is particularly important fore=0.424 (tip-optimized
! ©on spod, for which Q).(u) has zeros ai=1.75 andu=3.94, and
~0 for n=4N. This is because the modal shapes for Iargea minimum at=2.34[ Qg 4,42.34 =-0.440. (b) Q. (u) ap-
mode numbers have a large number of alternating positiveroaches zero_for' Iargeo'é\llz\/héns;o 4'24 Q ) ;0 for%
and negative slopes that average out the effective Cantl|eV%4. Whene <0.424,|0, ()| <0.1 for u=6.4. (c) There are

slope to zero. no zeros of() (u>0) for e<0.2. This means that, in these
cases, all modes are detected with the sgositive) sign of

E. Universal sensitivity function the sensitivity. (d) For large generalized mode numbers,

N, tip |Q.(u)| is largest fore =0. We use these properties for the

Motivated by the similar functional shape o] ) for ! ) e - . i
discussion of optimization strategies in the following section.

different N, we will now construct a universal sensitivity
function that describes the optical detection sensitivities for N . .
all modes for a given spot diameter and position near the tip'.:' Optimization strategies for the detection of
. . - ... __multiple normal modes
First, we allow continuous spot diameters and positions
while keeping their relationship as defined by In this section, we describe different strategies for opti-
Dp = Lo — &W (14) mizing the detection sensitivi.ties of multiple n.o.rmal modes.
b~ eff ' First, we assume that the diameter and position of the fo-
wheree denotes the distance of the spot position to the tip incused spotalong x,) can be arbitrarily adjustedAs dis-
multiples of the spot diameter. For exampie;0.424 for the  cussed in Sec. Il A, the diameter of the focused spot along
tip-optimized spot, as determined by Ed42) and (13). the cantilever width is assumed to be smaller than the canti-
Next, we note that now there are only two different lengthlever width) The spot diameter can be adjusted, for example,
scales to conside(1) the spot diametewy, and(2) the mode by changing the diameter of the incident beam with an ad-

wavelength A, [A,=2L.4/(n—1/2) for n=4]. Identical de- justable aperture in the incident-beam p%?th:onsider the
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case that detection of all normal modes up to a given modeeously with positive detection sensitivity. The optimum spot
number,N, is required.(1) The most direct wayfirst strat- diameter could be chosen in line with either the first or the
egy) is to choose a spot diameter and position that optimizesecond strategy. When using the first strategy,
the sensitivity for theNth mode: w/Ly=0.814(N-1/2) =0.814/20-1/2(200 um)=8.3 um, and the detection
and £=0.424. In this case, the sensitivity increases monosensitivity increases monotonically from the 1st to the 20th
tonically from mode number 1 thl (see Sec. IV D (2) If it mode[caseN=20 in Fig. 4a)]. When using the second strat-
is not required that the sensitivity is largest for mode numbeegy, the optimum spot diameter iw=1.75/(20+1/2
N, the spot diameter and position could be chosen such that(200 um)=17.1um, and the sensitivity initially mono-
the sensitivity of the (N+1) mode is zero:w/Ls;  tonically increases with increasing mode number, peaks at
=1.75/(N+1/2) and £=0.424. The sensitivity then in- mode numben= 10, and then monotonically decreases until
creases from mode number 1 to the largest possible value mode numben=20, while the sensitivity is always positive
atn=N/2, and then decreases umtiN. All sensitivities are  and nonzero. In both strategies=0.424, i.e., the spot is
positive and different from zero. The advantages of this secpositioned on the cantilever such that the distance of the spot
ond strategy are that the sensitivities for mode numiners center to the tip is 0.424 the spot diameter. Practically, this
<N/2 are about two times larger than in the first strategyspot position could be found by moving the spot from the
Also, the spot diameter is about two times larger than in thdase toward the tip until 4.5% of the total power of the
first strategy(larger spot diameters are usually easier to proincident beam is spilled over the edge at the (8.Consider
duce. The main disadvantage of the second strategy is thaan AFM for small cantilevers'*with a focused spot size of
the sensitivities for mode numbens=N/2 are lower thanin  W=4.0um, and a small cantilev&*® with an effective
the first strategy. This becomes critical if the bandwidth oflengthLeg=12 um [caseN=3 in Fig. 4a)]. When position-
the detection electronics is limited to low frequencig.If ~ Ing the spot using:=0.424 (strategies 1-3 the largest de-
it is acceptable that the detection sensitivities for somdection sensitivity is achieved already for the third mode.
modes are negative, the spot diameter and position could H%ositive, nonzero sensitivities are obtained until the fifth
chosen such that the sensitivity of this+1)" mode coin- mode, fairly large negative sensitivities are obtained at
cides with the second zero dbg4.4U): W/Ler=23.94/N around the eighth mode, and no modes are detected with a
+1/2) and e=0.424. The advantages of this third Strategysignificant sensitivity above the 12th mode. However, when
are even more pronounced than those of the second strategdpsitioning the spot at exactly the t{p=0 or p,=Lef i.e.,
the sensitivities for small normal mode numbers are abougllowing half of the incident-beam power to be spilled over
four times larger than in the first strategy, and the spot diamthe edge at the tip(strategy 4, the largest detection sensi-
eter is also about four times larger. Mixed positive and negallVity ~ is  obtained  for ~ mode  number n
tive sensitivities, however, might complicate further process= 1-4412 um)/(4.0 um)+1/2=5, and the sensitivity stays
ing. above 10% of that value for mode numbers
In many practical cases, however, it is not easily possibles 8-4212 um)/(4.0 um)+1/2=26. So more than 2 as
to adjust the diameter of the focused spot. Therefore, we nof?@ny normal modes can be detected when positioning the
also discuss a strategy for optimizing the detection sensitiviSPOt center exactly at the tip, as compared to the case when
ties for multiple normal modes for a fixed spot diameter. mposmomng the spot center further towards the base accord-
the case that the spot diameter is small enough so that one B9 t0£=0.424.
the strategies above can be applied, then it is best to place the
spot close to the tip according to Ed4) with 850.424_[We IV. CONCLUSION
note that for very small spot diameters,25% additional
sensitivity is achieved when positioning the spot slightly ~ We have presented a detailed theoretical investigation of
closer to the bas¢s=0.8)]. In those strategies, however, the sensitivity with which normal vibration modes of AFM
near-zero sensitivities will result for mode numbens cantilevers are detected using the optical beam deflection
=3.94_/w+1/2. So if thespot diameter is too large, then method. Arbitrary angular orientations of cantilever, incident
a fourth strategy should be applied, in which the spot isbeam, and scanner, respectively, were considered. Global and
positioned exactly at the tiz=0, i.e.,p,=L¢s). For this spot  locally restricted optimizations of the sensitivity were per-
position, relatively large sensitivities occur for large modeformed individually for each mode by varying the diameter
numbergsee Fig. 4b)]. The maximum detection sensitivity and position of the focused spot. Interestingly, optimum sen-
in this case is obtained for mode numbes1.49 .«/w  sitivity for higher-order modes is achieved when the spot is
+1/2Qy(1.45=0.744. For further increasing mode num- positioned close to the base of the cantilever and not close to
bers, the sensitivity decreases and drops below 10% of thile tip as might have been expected. The corresponding spot
value at the maximum fon<8.42 .«/w+1/2. Thedisad- diameter is 59% of the mode wavelength. Normal modes
vantage of this fourth strategy is that small mode numbersiumber 2 and higher can be detected with=2X larger
are detected with a reduced sensitivity32% of the sensi- sensitivity than mode number 1, suggesting that higher-order
tivity when £=0.424. Note that no gain in sensitivity is modes can be advantageous for imaging and spectroscopy
obtained for even smaller. applications. For the simultaneous detection of multiple nor-
Two examples using these results will now be given.  mal modes, however, it is generally of advantage to position
Suppose that all normal modes up to mode nunibeR0 of  the spot close to the tip. We constructed a universal sensitiv-
a cantilever withL.4=200 um need to be detected simulta- ity function from which the sensitivities for all modes can be
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