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Optimized detection of normal vibration modes of atomic force microscope
cantilevers with the optical beam deflection method

Tilman E. Schäffera! and Harald Fuchs
Center for Nanotechnology (CeNTech) and Physikalisches Institut, Westfälische Wilhelms-Universität
Münster, Gievenbecker Weg 11, 48149 Münster, Germany

sReceived 13 October 2004; accepted 17 January 2005; published online 6 April 2005d

Recently, higher-order normal vibration modes of atomic force microscope cantilevers were utilized
for functional imaging applications. Here, we present a detailed theoretical investigation of the
sensitivities with which these modes are detected using the optical beam deflection method. The
detection sensitivities depend strongly on the size and position of the focused optical spot.
Optimization of the sensitivities is performed for the individualstransversed normal modes. For the
case that multiple normal modes need to be detected simultaneously, a universal sensitivity function
is constructed. This function generates accurate values for the detection sensitivity as a function of
spot diameter and mode number. Finally, different optimization strategies for the simultaneous
detection of multiple normal modes are presented. ©2005 American Institute of Physics.
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I. INTRODUCTION

Since the invention of the atomic force microsco1

sAFMd, both static and dynamic modes have been use
the measurement of sample properties in various env
mental conditions. Prominent examples for imaging mo
are the contact mode,1 the tapping mode,2,3 and noncontac
modes.4–6 Force spectroscopic measurements can be
formed either statically7,8 or dynamically.9–12

The dynamic imaging and spectroscopy methods t
tionally utilize the first normalsfundamentald vibration mode
of the cantilever. It has been shown, however, that hig
order normal modes can be also used for functional ima
of surfaces. Minneet al.13 have measured surface elastic
by driving a cantilever that was partially coated with z
oxide at the second normal mode. In atomic force aco
microscopy,14,15 ultrasonic sample surface vibrations in
megahertz range are coupled to the AFM cantilever. Th
sulting cantilever dynamics can be modeled only if hig
order normal modes are included.16 Likewise, higher-orde
normal modes underlie the “forest of peaks” frequency s
trum obtained in tapping mode in liquid.17 Higher-order nor
mal modes were used to obtain material contrast on he
geneous surfaces.18,19 Furthermore, it has been shown tha
quantitative description of tapping mode AFM is poss
only if the simultaneous excitation of higher-order nor
modes is considered.20 It is thereby possible to reconstru
the time course of the tip-sample force.21 The feasibility for
spatially resolved force spectroscopy by the simultaneou
citation of multiple normal modes has been proposed.22

For a quantitative interpretation of the measuremen
sults, the amplitudes of the normal vibration modes nee
be accurately determined. The most widespread metho
detecting the deflection of an AFM cantilever is the opt
beam deflection method.23,24 In this method, an optical bea
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is focused to a spot on the cantilever and reflected fro
onto a position-sensitive photodetector, whereby angula
flections of the cantilever are detected. A theoretical for
ism for the sensitivity with which cantilever deflections
detected was developed based on optical diffrac
theory.25,26 Using this formalism, the thermal noise in
AFM was calculated using a modal decomposition,27 correc-
tions in thermal spring constant calibration due to a fi
size and position of the focused spot were derived.28 This
formalism was also used to show that there can besalmostd
pole-zero cancellations that lead to a significantly red
detection sensitivity for higher-order modes.29

Here, we present a detailed quantitative analysis o
sensitivities with which the normal modes are detected u
the optical beam deflection method. First, the formalism
the optical detection sensitivity is extended to a more ge
case. Second, the functional description of the normal m
is reviewed and approximations are given. Third, the de
tion sensitivities as a function of diameter and position o
focused spot for different normal modes are calculated
discussed. Fourth, optimization of the detection sensitiv
for the individual normal modes is performed. Fifth, sim
taneous detection of multiple normal modes is discusse
nally, different optimization strategies for the simultane
detection of multiple normal modes are presented. In
cases, quantitative results are given.

II. THEORY

A. Optical detection sensitivity

The sensitivity of the optical beam deflection met
was derived using classical diffraction theory for the spe
case when the axis of the incident optical beam and the
of thez scanner are perpendicular to the cantilever plane25,26

Here, we derive the more general case for an arbitrary a
lar orientation of the incident beam, the scanner, and

cantilever, respectively. For this purpose, we consider three

© 2005 American Institute of Physics4-1
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different coordinate reference framessFig. 1d: s1d that of the
incident beam with coordinatessxb,zbd, s2d that of the scan
ner with coordinatessxs,zsd, and s3d that of the cantileve
with coordinatessxc,zcd. The axis of the incident beam
parallel to thezb axis, the axis of thez scanner is parallel t
thezs axis, and the undeflected cantilever is along thexc axis.

The incident optical beam in an AFM is usually emit
from a laser diode. Its shape is highly ellipticalsaspect ratio
1:2–1:3d and approximately Gaussian. This beam is focu
to an elliptical spot on the cantilever, and is oriented s
that the main axes of the spot are along the cantilever le
and along the cantilever width, respectively. Well within
depth of focus of the incident beam,uzbu!pw2/ s4ld, the
one-dimensional irradiance distribution alongxb can be writ-
ten as

Isxbd =Î 8

p

P0

w
e−2f2sxb − pbd/wg2, s1d

where w is the diameter of the focused spot at
1/e2-irradiance points alongxb, pb is the position of the fo
cused spot on thexb axis, andP0 andl are the total powe
and wavelength of the incident beam, respectively. In
s1d, the positional variable along the direction perpendic
to bothxb andzb si.e., along the cantilever widthd was inte-
grated out. We note that the spot diameter along the ca
ver width is arbitrary as long as no significant light powe
spilled over the lateral edges of the cantilever, i.e., as lon
the spot diameter along the cantilever width is somew
smaller than the cantilever width.25 This condition is often
automatically satisfied when considering the large aspe
tio of the beam from the laser diode. When even large
pect ratios are required, additional cylindrical focusing op
or an adjustable aperture25 might be necessary. A slight sp
of light power over the lateral cantilever edges, howe
does not significantly alter the results of this paper. For

FIG. 1. Schematic of the optical beam deflection setup. The incident b
the scanner, and the cantilever are arbitrarily tilted with respect to each
swith anglesa and bd. Three different reference frames are therefore
sidered: That of the incident beamsxb,zbd, that of the scannersxs,zsd, and
that of the cantileversxc,zcd. The incident beam has a Gaussian irradia
profile in its focus,Ibsxbd, with a 1/e2 focused spot diameterw and cente
positionpb sboth alongxbd. Note that the focused spot is typically elliptic
in shape, and that only the spot diameter alongxb is relevant for the optica
deflection sensitivity—the spot diameter along the cantilever widthsperpen-
dicular to the paper planed is arbitrary as long as no light power is spill
over the lateral cantilever edges. Viewed in the direction of the inc
beam, the cantilever appears shortened with an effective lengthLeff.
diffraction calculations, we consider the effective length of
h

.

-

s
t

-
-

the cantilever as viewed in the direction of the incident b
salongzbd,

Leff = L cosb. s2d

We also consider the effective deflection of the cantileve
deff, as viewed in the direction of the incident beam. W
the z scanner deflects the cantilever byd salongzsd, then the
actual cantilever deflectionsalong zcd is d/cosa. In the di-
rection of the incident beam, this appears as

deff = d
cosb

cosa
. s3d

In most AFMs, a split photodiode is used as a detector
livering as detection signal the difference in incident po
on each segment:PA−PB. We define the optical detecti
sensitivity for such a detector as the detection signal per
tip deflection in the direction of thez scanner. By using E
s10d of Ref. 25 and substitutingLeff and deff for L and z,
respectively, we extend this equation to be valid for a s
with arbitrary angular orientations of cantilever, scanner,
incident beam, respectively. The optical detection sensi
can therefore be written as

snsw,pbd = s0
w

Leff
fnS w

Leff
,

pb

Leff
D . s4d

Equations4d is the product of a prefactor,

s0 =Îp

2

4P0 cosb

l cosa
, s5d

a factor,w/Leff, that is proportional to the focused spot
ameter and a factor that depends on the functional sha
the vibrating cantilever,

fnsu,vd =
4

pu2E
0

1

dqE
0

1

dq8
hnsqd − hnsq8d

q − q8

3expF− 4sq − vd2 − 4sq8 − vd2

u2 G . s6d

hnsqd is the normalized shape of the cantileverssee belowd.
fnsu,vd can be thought of as the “effective slope” of
section of the cantilever that is probed by the focused sp
is this effective slope what is really measured by the op
beam deflection method. In the case that non-Gaussia
cused spots are used, the formulas need to be ad
appropriately.25

In the case that a relative detection signal is used,sPA

−PBd / sPA+PAd, s0 needs to be divided by the total power
the reflected light,Pdet=PA+PB=e0

LeffIsxd dx. The require
ments for Eqs.s4d–s6d to be valid aresad the width of the
focused spotsperpendicular to bothxb andzbd is smaller than
the width of the cantilever so that no significant light po
is spilled over the lateral edges of the cantileversas discusse
in the previous paragraphd, sbd the cantilever deflection
small compared to its length:25 uzeffu!Leff, andscd the length
of the projection of the cantilever onto thezb axis is much
smaller than the depth of focus:L sinsbd!pw2/ s4ld. In

,
r

most of the cases considered here,Pdet=const, therefore op-
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timizing the sensitivity is approximately equivalent to o
mizing the signal-to-noise ratiosin the case of fundamenta
limiting shot noised.

B. Functional shape of normal vibration modes

The functional shapes of the normal modes of free,
damped, transverse vibrations of a rectangular cantileve
given by30

hnsqd =
s− 1dn

2
Fcosknq − coshknq

−
coskn + coshkn

sinkn + sinhkn
ssinknq − sinhknqdG . s7d

n denotes the mode number andhnsqd is normalized so tha
at the basesq=0d, hns0d=0, and at the tipsq=1d, hns1d=1.
The dimensionless wave numbers,kn, are the solutions of th
characteristic equation, coskn coshkn=−1, with discrete so
lutions kn>1.875, 4.694, 7.855,psn−1/2d for n=1,2,3,
ù4, respectively. To circumvent computational inaccura
for large mode numbers rooted in the subtraction of simi
large terms in Eq.s7d, we derived an approximation that
much easier to computesby rewriting the hyperbolic func
tions in terms of exponentials and dropping small termsd:

hnsqd >
s− 1dn

2
FÎ2 sinSknq +

3p

4
D − e−knqG

+
e−kns1−qd

2
, for n * 4. s8d

The functional shapes of the first five normal modes
shown in Fig. 2. Common to all modes is that their m
mum deflection and their maximum slope are located a
tip, with hn8s1d>1.377, 4.781, 7.849,kn for n=1,2,3,ù4,
respectively. For the convenience of the following disc
sion, we define the wavelengths of the vibration modesLn,
as they appear in the direction of the incident beamsi.e., in
the projection onto thexb axisd:

Ln =
2p

kn
Leff. s9d

For large mode numbers, the mode wavelength equals
times the distance between two central vibration node
viewed in the direction of the incident beam.

III. RESULTS AND DISCUSSION

A. Optimization of the detection sensitivity

The absolute value of the optical detection sensitivit
a function of spot diameter and positionsboth alongxb d fEq.
s4dg is displayed as grayscale plot for the first five nor
modes of a clamped-free rectangular cantileverfFigs.
3sad–3sedg. The brightness encodes the absolute value o
sensitivity, where larger values of the brightness corres
to larger absolute values of the sensitivity. It can be seen
the detection sensitivity strongly depends on those foc
spot parameterssdiameter and positiond and on the func
tional shape of the cantileversmode numbernd. To enhanc

the quantitative aspect of the plots, contour lines are intro
e

o
s

d
t
d

duced. The point in each grayscale plot where the sensi
is globally optimizedsfrom now on referred to as “global
optimized detection sensitivity”d is marked with an “3.” The
point in each plot where the sensitivity is locally optimiz
and closest to the tipsfrom now on referred to as “tip
optimized detection sensitivity”d is marked with a “1.”

For the first normal modefFig. 3sadg, globally optimized
and tip-optimized detection sensitivities coincidesus1/s0u
>0.783d and are achieved when spot diameter and pos
arew/Leff>0.952 andpb/Leff>0.569, respectively. In oth
words, optimum detection sensitivity for the first norm
mode, which is the relevant mode in most ac-mode ima
and spectroscopy techniques, is obtained when the sp
ameter is 95% of the effective cantilever length, and w
the spot center is positioned at 57% on the distance from
cantilever base to the tip. The sensitivity decreases whe
spot diameter and position deviate from those optimum
ues. This result refines a previous finding, where the d
tion sensitivity for a rigid, hinged cantilever was shown to
optimized when the spot diameter approximately equal
cantilever length and when the spot is positioned exact
the center of the cantilever.31,32 The outline of the optimum
spotsarea within the 1/e2-irradiance valuesd is shown on th
cantileverfFig. 2sad, crosshatched areag. Note that the size o
the spot along the width of the cantilever is arbitrary as
as no light is spilled over the lateral edges of the cantilev25

For reference purposes, we note that the functional sha
2 3

FIG. 2. Functional shapes of the first five normal vibration modes.
cantilever is clamped at its basesleft sided and free at its tipsright sided. The
crosshatched areas outline the focused spots that “globally optimize
“tip optimize” the detection sensitivity for each mode. For the first
second mode, these two spots are identical. For the third and higher m
larger detection sensitivities are achieved for a spot close to the
sglobally-optimized spot, left-hand sided than for a spot close to the t
stip-optimized spot, right-hand sided.
-a statically deflected cantilever,hstaticspd=s3p −p d /2, such
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as occurs during contact mode imaging or during fo
curves, is very similar to that of the first normal vibrat
mode. For such a statically deflected cantilever, optim
detection sensitivitysusstatic/s0u>0.778d is obtained whe
the spot diameter is 94% of the effective cantilever len
and when the spot center is positioned at 58% on the dis
from the cantilever base to the tip.

For the second normal modefFig. 3sbdg, globally opti-
mized detection sensitivitysus2/s0u>1.421d is achieved
when the spot diameter and position arew/Leff>0.563 and
Pb/Leff>0.763, respectively. The outline of such a spo
shown on the cantileverfFig. 2sbd, crosshatched areag. There
is a second local extremum of the sensitivity with a valu
about half of the global maximumsus2/s0u>0.685d, for a
spot diameter and position ofw/Leff>0.474 andpb/Leff

>0.238, respectivelyfFig. 3sbdg. This local extremum o
smaller value represents a focused spot that is distribute
the cantilever in the section closer to the base where
slope is of opposite sign.

For the third normal modefFig. 3scdg, globally opti-
mized detection sensitivitysus3/s0u >1.501d is achieved
when the spot diameter and position arew/Leff>0.453 and
pbLeff>0.490, respectively. This result is surprising at fi
as there are two other local extrema, one closer to the tip

FIG. 3. sad-sed Optical beam detection sensitivity as a function of the
cused spot diameter and position as combined grayscale/contour pl
mode numbersn=1–5. Areas with a brightsdarkd color correspond to larg
ssmalld absolute values of the detection sensitivity. The extremum with
largest absolute value of the sensitivity for each modesglobally optimizedd
is marked with an “3,” the extremum closest to the tipstip optimizedd is
marked with a “1.” Contour lines with zero sensitivity are present fon
ù2. sfd Globally-optimized and tip-optimized focused spot diameters
positions for the different normal modes. The dashed/dotted lines sym
spot diameters and positions for mode numbers larger than 5.
one close to the base. One might have expected that th
e

n
e

d

sensitivity would be higher for the spot close to the tipstip-
optimized sensitivityd, as the highest slope always occur
the tip. An intuitive explanation for this result will now
given. There are two effects for spots with a finite size
affect the detection sensitivityfsee Eq.s4dg: s1d The large
the spot diameter, the higher the absolute value of the d
tion sensitivity.s2d The larger the absolute value of the
fective cantilever slope in the section over which the focu
spot is distributed, the higher the absolute value of the
tection sensitivity. In other words, high detection sensiti
is generally achieved when the focused spot is sized
positioned such that it spans a large section of the cant
over which the slope is of constant sign and of high abs
value. For the third normal mode, it occurs that the ad
tage of a large spot diameter for the globally optimized
tremum weighs more than the advantage of a large effe
slope for the tip-optimized extremum. The outlines of
globally optimized spot and of the tip-optimized spot
displayed on the cantilever as the left and the right cr
hatched areas, respectivelyfFig. 2scdg.

For even higher normal modessnù4d, this trend contin
ues; the globally optimized sensitivity is always larger t
the tip-optimized sensitivityfFigs. 3sdd and 3sedg. Specifi-
cally, the globally optimized sensitivity is alwayssnù2d the
local extremum that is second closest to the base. The
lines of the globally optimized spot and the tip-optimi
spot for the fourth and fifth normal modes, respectively,
shown as the crosshatched areas in Figs. 2sdd and 2sed.

Separating two adjacent maxima, there is always a
tour line of zero sensitivityfFigs. 3sbd–3sed, white contou
linesg. This is because neighboring extrema of the sensit
are of alternating signsrepresenting sections of positive a
negative cantilever slopesd. For small spot diameterssw
!Lnd the zero-contour lines are located at those spot
tions, pb, for which the cantilever slope is zero:hn8spb/Leffd
=0. For an increasing spot diameter, the contour lines
tially point perpendicularly away from thepb axis, until the
spot diameter passes the value of the globally optimized
sitivity, after which some of the contour lines deviate fr
this perpendicular orientation. When spot parameters
chosen on a zero-contour line, there will be zero dete
sensitivity for the respective mode. These cases should
fore be avoided when the detection sensitivity is to be
mized.

B. Globally optimized sensitivity

The absolute values of the globally optimized detec
sensitivities and the corresponding spot diameters and
tions are listed in Table I. The absolute value of the glob
optimized detection sensitivity is by far the smallest fon
=1; it is only about half as large as those for the higher-o
modes. The reason for this is that when going from the
to the second mode, the effective cantilever slope incre
at a rate about twice as large as the rate with which
focused spot diameter decreases. For higher-order m
these two rates are comparable, and the absolute value
sensitivity asymptotically plateaus atusn/s0u >1.557 for n

r

e

eù5. Such a plateau does not occur in a simple geometric-
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optics treatment, where the spot could be focused to a
at the tip of the cantilever where the slope is largest. In
case, the sensitivity would instead increase indefinitely
increasing mode numbers, sincehn8s1d→` for n→`.33

Based on these results, it is interesting to speculate tha
first normal mode, which is predominantly used in curren
imaging and spectroscopic techniques, might not be the
advantageous with respect to sensitivity and resolution
compared to the higher-order modes.

For large mode numbers, the optimum spot diamet
expected at about half the mode wavelength,Ln. This way,
the spot can be distributed in the section between two
nodes, making the spot diameter as large as possible w
significantly “sampling” cantilever slopes of opposite si
The numerically accurate calculation yields that the optim
spot diameter is even slightly larger,

wsn,globald > 0.586Ln >
1.17

n − 1/2
Leff, for n ù 5. s10d

Here we utilized Eq.s9d with the approximation forkn. The
spot is consequently positioned near the vibration mode
is closest to the basesexcluding the base, compare Fig.d.
The numerically accurate calculation yields for the optim
spot position,

pb
sn,globald > 0.618Ln >

1.24

n − 1/2
Leff, for n ù 5. s11d

The spot diameter decreases monotonically for increa
mode numbers. In the limit of high mode numbers, the
diameter approaches zero, and the spot position appro
the base of the cantileverfFig. 3sfd, dashed lineg.

C. Tip-optimized sensitivity

The absolute values of the tip-optimized detection se
tivities and the corresponding spot diameters and posi
are also listed in Table I. The tip-optimized detection se
tivity is smallest for n=1 and asymptotically plateaus
sn/s0>1.370 fornù5. Just as in the case of the globa

TABLE I. Globally optimized and tip-optimized s
detection sensitivity,usnu, as well as the mode wa
ù5, two lines corresponding to two equivalent e
s10d–s13dg. The values for a statically deflected c
sensitivity for mode number 1 is only about half

Mode
number Globally optimize

n Ln/Leff w/Leff pb/Leff

sstaticd ¯ -identical to tip optimize
1 3.351 -identical to tip optimize
2 1.339 -identical to tip optimize
3 0.800 0.453 0.4
4 0.571 0.335 0.3

ù5 2/sn−1/2d 1.17/sn−1/2d 1.24/sn−1/2
0.586sLn/Leffd 0.618sLn/Leff
optimized sensitivity, the tip-optimized sensitivity of the first
t

e

t
s

-
ut

t

g
t
es

-
s

normal mode is by far the smallest, whereas all higher-o
modes are detected with about the same sensitivitysif the
spot parameters are adjusted individuallyd.

For large mode numbers, the optimum spot diamet
expected to be somewhat smaller than that for the glo
optimized case above. The reason for this is that the
“free,” and therefore the distance between the tip and the
antinode before the tip is smaller than the distance bet
two central antinodes, thereby also reducing the optim
spot diameter. The numerically accurate calculation y
for the optimum spot diameter,

wsn,tipd > 0.407Ln >
0.814

n − 1/2
Leff, for n ù 5. s12d

The spot is positioned near the vibration node that is clo
to the tip scompare Fig. 2d. The numerically accurate calc
lation yields for the optimum spot position,

pb
sn,tipd > Leff − 0.173Ln > S1 −

0.345

n − 1/2
DLeff, for n

ù 5. s13d

Again, the spot diameter decreases monotonically fo
creasing mode numbers. In the limit of large mode num
the spot diameter approaches zero, and the spot positio
proaches the tip of the cantileverfFig. 3sfd, dotted lineg. In
the limit of large mode numbers, the tip-optimized sensiti
is >88.0% of the globally optimized sensitivity.

D. Simultaneous detection of multiple normal modes

If multiple normal modes need to be detected simu
neously, spot parameters need to be chosen that are as
possible away from all zero-contour lines for all respec
modessFig. 3d. While it might be possible to find such p
rameters, it is much more straightforward to sacrifice a s
amount of sensitivity and to choose a spot close to the
especially if a large number of modes need to be dete
simultaneously. For example, we consider the spot diam
wsN,tipd, and positions,pb

sN,tipd, that tip optimize the detectio
sensitivity for N=3, N=6, N=10, andN=20, respectively

iameter,w, spot position,pb, and absolute value of the
ngth,Ln, as a function of the mode number,n. For n
sions for spot diameter and position are displayedfEqs.

ever are also shown. Note that the optimized detection
ose for higher mode numbers.

Tip optimized

n/s0u w/Leff pb/Leff usn/s0u

0.944 0.583 0.778
0.952 0.569 0.783
0.563 0.763 1.421

1.501 0.325 0.862 1.368
1.560 0.233 0.901 1.371
.557 0.814/sn−1/2d 1−0.345/sn−1/2d 1.370

0.407sLn/Leffd 1−0.173sLn/Leffd
pot d
vele

xpres
antil
of th

d

us

d-
d-
d-

90
53
d 1
d

w/Leff>0.33, 0.15, 0.086, 0.042, andpb/Leff;0.86, 0.94,
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0.96, 0.98, respectively. We plot the respective detection
sitivities, sn

sN,tipd
ªsnswsN,tipd ,pb

sN,tipdd, as a function ofn fFig.
4sadg. There are a number of observations that can be m
sad sn

sN,tipd increases monotonically fromn=1–n=N. This is
because the slope of the cantilever close to the tip incre
for increasing mode numbers.sbd sn

sN,tipd is largest atn=N
sper definitiond. scd For n.N, sn

sN,tipd decreases at firs
passes through zero, and exhibits a minimum.sdd sn

sN,tipd

<0 for n*4N. This is because the modal shapes for la
mode numbers have a large number of alternating pos
and negative slopes that average out the effective cant
slope to zero.

E. Universal sensitivity function

Motivated by the similar functional shape ofsn
sN,tipd for

different N, we will now construct a universal sensitiv
function that describes the optical detection sensitivities
all modes for a given spot diameter and position near the
First, we allow continuous spot diameters and posit
while keeping their relationship as defined by

pb = Leff − «w, s14d

where« denotes the distance of the spot position to the t
multiples of the spot diameter. For example,«=0.424 for the
tip-optimized spot, as determined by Eqs.s12d and s13d.
Next, we note that now there are only two different len
scales to consider:s1d the spot diameter,w, ands2d the mode

FIG. 4. sad Detection sensitivity for different spot diameters and position
a function of mode number,n. The sensitivity increases at first for increas
mode numbers, then exhibits a maximum, becomes negative, passes
a minimum, and asymptotically approaches zero.sThe lines connect th
markers to guide the eye.d sbd Universal sensitivity as a function of gen
alized mode number,u=sn−1/2dw/Leff, for different values of«=sLeff

−pbd /w. From the universal sensitivity function, the detection sensitiv
for given spot diameters, spot positions, and mode numbers can be
up using Eq.s17d.
wavelength,Ln fLn>2Leff / sn−1/2d for nù4g. Identical de-
-

:

s

r

.

tection sensitivities are generally obtained for identical ra
of spot diameter to mode wavelengthfwith Eq. s14d as con
ditiong. Using this relationship, we construct a universal
sitivity function, V«sud, by defining in the limit ofw→0
si.e., N→`d and forn@1:

V«sud =
1

s0
snS w

Leff
,1 −«

w

Leff
D , s15d

whereu is the generalized mode number

u = Sn −
1

2
D w

Leff
. s16d

V«sud is plotted in Fig. 4sbd for different values of the pa
rameter«. From V«sud, the detection sensitivity for a give
spot diameter, spot position, and mode number can be f
It turns out that accurate results are obtained even for
mode numbers if simplesempiricald correction factors ar
introduced forn=1 andn=2: Given a spot of diameterw
sw/Leffø0.3d that is positioned somewhere near the tipsu«u
&0.5d, the detection sensitivity for thenth mode,sn/s0, is
obtained from the universal sensitivity function as

sn

s0
> V«FSn −

1

2
D w

Leff
G50.876, if n = 1

1.015, if n = 2

1, if n ù 3.

s17d

The error of this approximation is,1%. For higher mod
numberssand for smaller«d, the requirement on the spot s
can be progressively relaxedsi.e., accurate results are a
obtained forw/Leff*0.3d. For the first normal mode, alte
native, simpler approximations can be found empirica
s1/ ss0w/Leffd>1.078, 0.702, 0.344, 0.112 for«=0.424, 0.2
0, 20.2, respectively.

Important properties ofV«sud arefsee Fig. 4sbdg: sad the
largest absolute value ofV«sud is located atu>0.184 and
«;0.424 fVs0.814d>1.370g. This result is found also
Eqs.s12d ands13d. Therefore, the universal sensitivity fun
tion is particularly important for«=0.424 stip-optimized
spotd, for which V«sud has zeros atu=1.75 andu=3.94, and
a minimum atu=2.34fV0.424s2.34d>−0.440g. sbd V«sud ap-
proaches zero for largeu. When«*0.424,V«sud<0 for u
*4. When«&0.424,uV«sudu,0.1 for u*6.4. scd There are
no zeros ofV«su.0d for «&0.2. This means that, in the
cases, all modes are detected with the samespositived sign of
the sensitivity. sdd For large generalized mode numbe
uV«sudu is largest for«<0. We use these properties for
discussion of optimization strategies in the following sect

F. Optimization strategies for the detection of
multiple normal modes

In this section, we describe different strategies for o
mizing the detection sensitivities of multiple normal mod
First, we assume that the diameter and position of the
cused spotsalong xbd can be arbitrarily adjusted.sAs dis-
cussed in Sec. II A, the diameter of the focused spot a
the cantilever width is assumed to be smaller than the c
lever width.d The spot diameter can be adjusted, for exam
by changing the diameter of the incident beam with an

25

gh

d

justable aperture in the incident-beam path.Consider the
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case that detection of all normal modes up to a given m
number,N, is required.s1d The most direct waysfirst strat-
egyd is to choose a spot diameter and position that optim
the sensitivity for theNth mode: w/Leff>0.814/sN−1/2d
and «>0.424. In this case, the sensitivity increases mo
tonically from mode number 1 toN ssee Sec. IV Dd. s2d If it
is not required that the sensitivity is largest for mode num
N, the spot diameter and position could be chosen such
the sensitivity of the sN+1dth mode is zero: w/Leff

>1.75/sN+1/2d and «>0.424. The sensitivity then in
creases from mode numbern=1 to the largest possible val
at n=N/2, and then decreases untiln=N. All sensitivities are
positive and different from zero. The advantages of this
ond strategy are that the sensitivities for mode numben
&N/2 are about two times larger than in the first strat
Also, the spot diameter is about two times larger than in
first strategyslarger spot diameters are usually easier to
duced. The main disadvantage of the second strategy is
the sensitivities for mode numbersn*N/2 are lower than i
the first strategy. This becomes critical if the bandwidth
the detection electronics is limited to low frequencies.s3d If
it is acceptable that the detection sensitivities for s
modes are negative, the spot diameter and position cou
chosen such that the sensitivity of thesN+1dth mode coin
cides with the second zero ofV0.424sud: w/Leff>3.94/sN
+1/2d and «>0.424. The advantages of this third strat
are even more pronounced than those of the second str
the sensitivities for small normal mode numbers are a
four times larger than in the first strategy, and the spot d
eter is also about four times larger. Mixed positive and n
tive sensitivities, however, might complicate further proc
ing.

In many practical cases, however, it is not easily pos
to adjust the diameter of the focused spot. Therefore, we
also discuss a strategy for optimizing the detection sens
ties for multiple normal modes for a fixed spot diameter
the case that the spot diameter is small enough so that o
the strategies above can be applied, then it is best to pla
spot close to the tip according to Eq.s14d with «>0.424fwe
note that for very small spot diameters,<25% additiona
sensitivity is achieved when positioning the spot slig
closer to the bases«>0.8dg. In those strategies, howev
near-zero sensitivities will result for mode numbersn
ù3.94Leff /w+1/2. So if thespot diameter is too large, th
a fourth strategy should be applied, in which the spo
positioned exactly at the tips«=0, i.e.,pb=Leffd. For this spo
position, relatively large sensitivities occur for large m
numbersfsee Fig. 4sbdg. The maximum detection sensitiv
in this case is obtained for mode numbern>1.45Leff /w
+1/2fV0s1.45d>0.746g. For further increasing mode num
bers, the sensitivity decreases and drops below 10% o
value at the maximum fornø8.42Leff /w+1/2. Thedisad-
vantage of this fourth strategy is that small mode num
are detected with a reduced sensitivitys<32% of the sens
tivity when «>0.424d. Note that no gain in sensitivity
obtained for even smaller«.

Two examples using these results will now be givens1d
Suppose that all normal modes up to mode numberN=20 of

a cantilever withLeff=200mm need to be detected simulta-
t

-

t

e

y;
t
-
-

-

of
e

e

neously with positive detection sensitivity. The optimum s
diameter could be chosen in line with either the first or
second strategy. When using the first strategy,w
>0.814/s20−1/2ds200 mmd>8.3 mm, and the detectio
sensitivity increases monotonically from the 1st to the
modefcaseN=20 in Fig. 4sadg. When using the second str
egy, the optimum spot diameter isw>1.75/s20+1/2d
3s200 mmd>17.1mm, and the sensitivity initially mono
tonically increases with increasing mode number, pea
mode numbern<10, and then monotonically decreases u
mode numbern=20, while the sensitivity is always positi
and nonzero. In both strategies,«=0.424, i.e., the spot
positioned on the cantilever such that the distance of the
center to the tip is 0.4243 the spot diameter. Practically, th
spot position could be found by moving the spot from
base toward the tip until 4.5% of the total power of
incident beam is spilled over the edge at the tip.s2d Conside
an AFM for small cantilevers17,34with a focused spot size
w=4.0 mm, and a small cantilever35,36 with an effective
lengthLeff=12 mm fcaseN=3 in Fig. 4sadg. When position
ing the spot using«=0.424 sstrategies 1–3d, the largest de
tection sensitivity is achieved already for the third mo
Positive, nonzero sensitivities are obtained until the
mode, fairly large negative sensitivities are obtained
around the eighth mode, and no modes are detected w
significant sensitivity above the 12th mode. However, w
positioning the spot at exactly the tips«=0 or pb=Leff i.e.,
allowing half of the incident-beam power to be spilled o
the edge at the tipd sstrategy 4d, the largest detection sen
tivity is obtained for mode number n
>1.45s12 mmd / s4.0 mmd+1/2>5, and the sensitivity sta
above 10% of that value for mode numbersn
&8.42s12 mmd / s4.0 mmd+1/2>26. So more than 23 as
many normal modes can be detected when positionin
spot center exactly at the tip, as compared to the case
positioning the spot center further towards the base ac
ing to «=0.424.

IV. CONCLUSION

We have presented a detailed theoretical investigati
the sensitivity with which normal vibration modes of AF
cantilevers are detected using the optical beam defle
method. Arbitrary angular orientations of cantilever, incid
beam, and scanner, respectively, were considered. Glob
locally restricted optimizations of the sensitivity were p
formed individually for each mode by varying the diame
and position of the focused spot. Interestingly, optimum
sitivity for higher-order modes is achieved when the sp
positioned close to the base of the cantilever and not clo
the tip as might have been expected. The corresponding
diameter is 59% of the mode wavelength. Normal mo
number 2 and higher can be detected with a<23 larger
sensitivity than mode number 1, suggesting that higher-o
modes can be advantageous for imaging and spectro
applications. For the simultaneous detection of multiple
mal modes, however, it is generally of advantage to pos
the spot close to the tip. We constructed a universal sen

ity function from which the sensitivities for all modes can be
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extracted, and discussed different optimization strategie
the simultaneous detection of multiple normal modes.
small spot diameters, the strategy is to position the spo
the cantilever such that the distance from the spot cen
the tip is <0.4243 the spot diameter. For large spot dia
eters, the strategy is to position the spot center exactly a
tip of the cantilever.
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